Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Sep 2024 (v1), last revised 30 Nov 2024 (this version, v2)]
Title:Solving Video Inverse Problems Using Image Diffusion Models
View PDF HTML (experimental)Abstract:Recently, diffusion model-based inverse problem solvers (DIS) have emerged as state-of-the-art approaches for addressing inverse problems, including image super-resolution, deblurring, inpainting, etc. However, their application to video inverse problems arising from spatio-temporal degradation remains largely unexplored due to the challenges in training video diffusion models. To address this issue, here we introduce an innovative video inverse solver that leverages only image diffusion models. Specifically, by drawing inspiration from the success of the recent decomposed diffusion sampler (DDS), our method treats the time dimension of a video as the batch dimension of image diffusion models and solves spatio-temporal optimization problems within denoised spatio-temporal batches derived from each image diffusion model. Moreover, we introduce a batch-consistent diffusion sampling strategy that encourages consistency across batches by synchronizing the stochastic noise components in image diffusion models. Our approach synergistically combines batch-consistent sampling with simultaneous optimization of denoised spatio-temporal batches at each reverse diffusion step, resulting in a novel and efficient diffusion sampling strategy for video inverse problems. Experimental results demonstrate that our method effectively addresses various spatio-temporal degradations in video inverse problems, achieving state-of-the-art reconstructions. Project page: this https URL
Submission history
From: Jong Chul Ye [view email][v1] Wed, 4 Sep 2024 09:48:27 UTC (4,117 KB)
[v2] Sat, 30 Nov 2024 01:42:25 UTC (4,117 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.