Quantum Physics
[Submitted on 20 Aug 2024]
Title:Dependable Classical-Quantum Computer Systems Engineering
View PDF HTML (experimental)Abstract:Quantum Computing (QC) offers the potential to enhance traditional High-Performance Computing (HPC) workloads by leveraging the unique properties of quantum computers, leading to the emergence of a new paradigm: HPC-QC. While this integration presents new opportunities, it also brings novel challenges, particularly in ensuring the dependability of such hybrid systems. This paper aims to identify integration challenges, anticipate failures, and foster a diverse co-design for HPC-QC systems by bringing together QC, cloud computing, HPC, and network security. The focus of this emerging inter-disciplinary effort is to develop engineering principles that ensure the dependability of hybrid systems, aiming for a more prescriptive co-design cycle. Our framework will help to prevent design pitfalls and accelerate the maturation of the QC technology ecosystem. Key aspects include building resilient HPC-QC systems, analyzing the applicability of conventional techniques to the quantum domain, and exploring the complexity of scaling in such hybrid systems. This underscores the need for performance-reliability metrics specific to this new computational paradigm.
Submission history
From: Edoardo Giusto PhD [view email][v1] Tue, 20 Aug 2024 01:57:17 UTC (3,519 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.