Computer Science > Computers and Society
[Submitted on 24 May 2024]
Title:E2Vec: Feature Embedding with Temporal Information for Analyzing Student Actions in E-Book Systems
View PDF HTML (experimental)Abstract:Digital textbook (e-book) systems record student interactions with textbooks as a sequence of events called EventStream data. In the past, researchers extracted meaningful features from EventStream, and utilized them as inputs for downstream tasks such as grade prediction and modeling of student behavior. Previous research evaluated models that mainly used statistical-based features derived from EventStream logs, such as the number of operation types or access frequencies. While these features are useful for providing certain insights, they lack temporal information that captures fine-grained differences in learning behaviors among different students. This study proposes E2Vec, a novel feature representation method based on word embeddings. The proposed method regards operation logs and their time intervals for each student as a string sequence of characters and generates a student vector of learning activity features that incorporates time information. We applied fastText to generate an embedding vector for each of 305 students in a dataset from two years of computer science courses. Then, we investigated the effectiveness of E2Vec in an at-risk detection task, demonstrating potential for generalizability and performance.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.