Computer Science > Computers and Society
[Submitted on 26 Jun 2024 (v1), last revised 1 Aug 2024 (this version, v2)]
Title:From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation
View PDFAbstract:Shifting to cycling in urban areas reduces greenhouse gas emissions and improves public health. Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling and provide civil society with evidence to advocate for cyclists' needs. Yet, the data currently available to cities and citizens often only comes from sparsely located counting stations. This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin. We predict daily and average annual daily street-level bicycle volumes using machine-learning techniques and various public data sources. These include app-based crowdsourced data, infrastructure, bike-sharing, motorized traffic, socioeconomic indicators, weather, and holiday data. Our analysis reveals that the best-performing model is XGBoost, and crowdsourced cycling and infrastructure data are most important for the prediction. We further simulate how collecting short-term counts at predicted locations improves performance. By providing ten days of such sample counts for each predicted location to the model, we are able to halve the error and greatly reduce the variability in performance among predicted locations.
Submission history
From: Silke Kirstin Kaiser [view email][v1] Wed, 26 Jun 2024 16:01:53 UTC (3,786 KB)
[v2] Thu, 1 Aug 2024 08:09:40 UTC (3,786 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.