Computer Science > Computation and Language
[Submitted on 17 Jun 2024]
Title:FamiCom: Further Demystifying Prompts for Language Models with Task-Agnostic Performance Estimation
View PDF HTML (experimental)Abstract:Language models have shown impressive in-context-learning capabilities, which allow them to benefit from input prompts and perform better on downstream end tasks. Existing works investigate the mechanisms behind this observation, and propose label-agnostic prompt metrics that can better estimate end-task performances. One popular approach is using perplexity as a way to measure models' familiarity with the prompt. While showing consistent improvements on in-domain tasks, we found that familiarity metrics such as perplexity cannot accurately estimate performance in complicated situations such as task or domain transferring scenarios. In this work, we propose a revised measure called FamiCom, providing a more comprehensive measure for task-agnostic performance estimation. Specifically, FamiCom combines familiarity with \textit{complexity} -- the inherent difficulty of end tasks, which is an important factor missing from current metrics. Experiments show that FamiCom strongly correlates with end-task performances, producing a 0.85 Spearman's correlation, versus 0.43 of familiarity-only ones'. We further apply FamiCom to automatic prompt and demonstration selection, and outperform existing methods and baselines by more than 7.0% in accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.