Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jun 2024]
Title:From operculum and body tail movements to different coupling of physical activity and respiratory frequency in farmed gilthead sea bream and European sea bass. Insights on aquaculture biosensing
View PDFAbstract:The AEFishBIT tri-axial accelerometer was externally attached to the operculum to assess the divergent activity and respiratory patterns of two marine farmed fish, the gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Analysis of raw data from exercised fish highlighted the large amplitude of operculum aperture and body tail movements in European sea bass, which were overall more stable at low-medium exercise intensity levels. Cosinor analysis in free-swimming fish (on-board data processing) highlighted a pronounced daily rhythmicity of locomotor activity and respiratory frequency in both gilthead sea bream and European sea bass. Acrophases of activity and respiration were coupled in gilthead sea bream, acting feeding time (once daily at 11:00 h) as a main synchronizing factor. By contrast, locomotor activity and respiratory frequency were out of phase in European sea bass with activity acrophase on early morning and respiration acrophase on the afternoon. The daily range of activity and respiration variation was also higher in European sea bass, probably as part of the adaptation of this fish species to act as a fast swimming predator. In any case, lower locomotor activity and enhanced respiration were associated with larger body weight in both fish species. This agrees with the notion that selection for fast growth in farming conditions is accompanied by a lower activity profile, which may favor an efficient feed conversion for growth purposes. Therefore, the use of behavioral monitoring is becoming a reliable and large-scale promising tool for selecting more efficient farmed fish, allowing researchers and farmers to establish stricter criteria of welfare for more sustainable and ethical fish production.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.