Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 24 Apr 2024]
Title:Jitter Characterization of the HyTI Satellite
View PDF HTML (experimental)Abstract:The Hyperspectral Thermal Imager (HyTI) is a technology demonstration mission that will obtain high spatial, spectral, and temporal resolution long-wave infrared images of Earth's surface from a 6U cubesat. HyTI science requires that the pointing accuracy of the optical axis shall not exceed 2.89 arcsec over the 0.5 ms integration time due to microvibration effects (known as jitter). Two sources of vibration are a cryocooler that is added to maintain the detector at 68 K and three orthogonally placed reaction wheels that are a part of the attitude control system. Both of these parts will introduce vibrations that are propagated through to the satellite structure while imaging. Typical methods of characterizing and measuring jitter involve complex finite element methods and specialized equipment and setups. In this paper, we describe a novel method of characterizing jitter for small satellite systems that is low-cost and minimally modifies the subject's mass distribution. The metrology instrument is comprised of a laser source, a small mirror mounted via a 3D printed clamp to a jig, and a lateral effect position-sensing detector. The position-sensing detector samples 1000 Hz and can measure displacements as little as 0.15 arcsec at distances of one meter. This paper provides an experimental procedure that incrementally analyzes vibratory sources to establish causal relationships between sources and the vibratory modes they create. We demonstrate the capabilities of this metrology system and testing procedure on HyTI in the Hawaii Space Flight Lab's clean room. Results include power spectral density plots that show fundamental and higher-order vibratory modal frequencies. Results from metrology show that jitter from reaction wheels meets HyTI system requirements within 3$\sigma$.
Current browse context:
astro-ph.IM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.