Computer Science > Machine Learning
[Submitted on 18 Apr 2024 (v1), last revised 2 Sep 2024 (this version, v2)]
Title:TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents
View PDF HTML (experimental)Abstract:Reinforcement learning (RL) trains an agent from experiences interacting with the environment. In scenarios where online interactions are impractical, offline RL, which trains the agent using pre-collected datasets, has become popular. While this new paradigm presents remarkable effectiveness across various real-world domains, like healthcare and energy management, there is a growing demand to enable agents to rapidly and completely eliminate the influence of specific trajectories from both the training dataset and the trained agents. To meet this problem, this paper advocates Trajdeleter, the first practical approach to trajectory unlearning for offline RL agents. The key idea of Trajdeleter is to guide the agent to demonstrate deteriorating performance when it encounters states associated with unlearning trajectories. Simultaneously, it ensures the agent maintains its original performance level when facing other remaining trajectories. Additionally, we introduce Trajauditor, a simple yet efficient method to evaluate whether Trajdeleter successfully eliminates the specific trajectories of influence from the offline RL agent. Extensive experiments conducted on six offline RL algorithms and three tasks demonstrate that Trajdeleter requires only about 1.5% of the time needed for retraining from scratch. It effectively unlearns an average of 94.8% of the targeted trajectories yet still performs well in actual environment interactions after unlearning. The replication package and agent parameters are available online.
Submission history
From: Chen Gong [view email][v1] Thu, 18 Apr 2024 22:23:24 UTC (14,763 KB)
[v2] Mon, 2 Sep 2024 01:39:58 UTC (15,718 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.