Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Mar 2024 (v1), last revised 16 Sep 2024 (this version, v2)]
Title:InfNeRF: Towards Infinite Scale NeRF Rendering with O(log n) Space Complexity
View PDF HTML (experimental)Abstract:The conventional mesh-based Level of Detail (LoD) technique, exemplified by applications such as Google Earth and many game engines, exhibits the capability to holistically represent a large scene even the Earth, and achieves rendering with a space complexity of O(log n). This constrained data requirement not only enhances rendering efficiency but also facilitates dynamic data fetching, thereby enabling a seamless 3D navigation experience for users. In this work, we extend this proven LoD technique to Neural Radiance Fields (NeRF) by introducing an octree structure to represent the scenes in different scales. This innovative approach provides a mathematically simple and elegant representation with a rendering space complexity of O(log n), aligned with the efficiency of mesh-based LoD techniques. We also present a novel training strategy that maintains a complexity of O(n). This strategy allows for parallel training with minimal overhead, ensuring the scalability and efficiency of our proposed method. Our contribution is not only in extending the capabilities of existing techniques but also in establishing a foundation for scalable and efficient large-scale scene representation using NeRF and octree structures.
Submission history
From: Jiabin Liang [view email][v1] Thu, 21 Mar 2024 13:06:57 UTC (7,366 KB)
[v2] Mon, 16 Sep 2024 07:03:42 UTC (17,381 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.