Computer Science > Computers and Society
[Submitted on 4 Mar 2024]
Title:Predicting Learning Performance with Large Language Models: A Study in Adult Literacy
View PDF HTML (experimental)Abstract:Intelligent Tutoring Systems (ITSs) have significantly enhanced adult literacy training, a key factor for societal participation, employment opportunities, and lifelong learning. Our study investigates the application of advanced AI models, including Large Language Models (LLMs) like GPT-4, for predicting learning performance in adult literacy programs in ITSs. This research is motivated by the potential of LLMs to predict learning performance based on its inherent reasoning and computational capabilities. By using reading comprehension datasets from the ITS, AutoTutor, we evaluate the predictive capabilities of GPT-4 versus traditional machine learning methods in predicting learning performance through five-fold cross-validation techniques. Our findings show that the GPT-4 presents the competitive predictive abilities with traditional machine learning methods such as Bayesian Knowledge Tracing, Performance Factor Analysis, Sparse Factor Analysis Lite (SPARFA-Lite), tensor factorization and eXtreme Gradient Boosting (XGBoost). While XGBoost (trained on local machine) outperforms GPT-4 in predictive accuracy, GPT-4-selected XGBoost and its subsequent tuning on the GPT-4 platform demonstrates superior performance compared to local machine execution. Moreover, our investigation into hyper-parameter tuning by GPT-4 versus grid-search suggests comparable performance, albeit with less stability in the automated approach, using XGBoost as the case study. Our study contributes to the field by highlighting the potential of integrating LLMs with traditional machine learning models to enhance predictive accuracy and personalize adult literacy education, setting a foundation for future research in applying LLMs within ITSs.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.