Computer Science > Discrete Mathematics
[Submitted on 19 Mar 2024 (v1), last revised 22 Mar 2024 (this version, v2)]
Title:The ultrametric backbone is the union of all minimum spanning forests
View PDF HTML (experimental)Abstract:Minimum spanning trees and forests are powerful sparsification techniques that remove cycles from weighted graphs to minimize total edge weight while preserving node connectivity. They have applications in computer science, network science, and graph theory. Despite their utility and ubiquity, they have several limitations, including that they are only defined for undirected networks, they significantly alter dynamics on networks, and they do not generally preserve important network features such as shortest distances, shortest path distribution, and community structure. In contrast, distance backbones, which are subgraphs formed by all edges that obey a generalized triangle inequality, are well defined in both directed and undirected graphs and preserve those and other important network features. The backbone of a graph is defined with respect to a specified path-length operator that aggregates weights along a path to define its length, thereby associating a cost to indirect connections. The backbone is the union of all shortest paths between each pair of nodes according to the specified operator. One such operator, the max function, computes the length of a path as the largest weight of the edges that compose it (a weakest link criterion). It is the only operator that yields an algebraic structure for computing shortest paths that is consistent with De Morgan's laws. Applying this operator yields the ultrametric backbone of a graph in that (semi-triangular) edges whose weights are larger than the length of an indirect path connecting the same nodes (i.e., those that break the generalized triangle inequality based on max as a path-length operator) are removed. We show that the ultrametric backbone is the union of all minimum spanning forests in undirected graphs and provides a new generalization of minimum spanning trees to directed graphs.
Submission history
From: Jordan Rozum [view email][v1] Tue, 19 Mar 2024 13:08:23 UTC (45 KB)
[v2] Fri, 22 Mar 2024 11:27:05 UTC (45 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.