Computer Science > Cryptography and Security
[Submitted on 2 Mar 2024]
Title:Query Recovery from Easy to Hard: Jigsaw Attack against SSE
View PDFAbstract:Searchable symmetric encryption schemes often unintentionally disclose certain sensitive information, such as access, volume, and search patterns. Attackers can exploit such leakages and other available knowledge related to the user's database to recover queries. We find that the effectiveness of query recovery attacks depends on the volume/frequency distribution of keywords. Queries containing keywords with high volumes/frequencies are more susceptible to recovery, even when countermeasures are implemented. Attackers can also effectively leverage these ``special'' queries to recover all others.
By exploiting the above finding, we propose a Jigsaw attack that begins by accurately identifying and recovering those distinctive queries. Leveraging the volume, frequency, and co-occurrence information, our attack achieves $90\%$ accuracy in three tested datasets, which is comparable to previous attacks (Oya et al., USENIX' 22 and Damie et al., USENIX' 21). With the same runtime, our attack demonstrates an advantage over the attack proposed by Oya et al (approximately $15\%$ more accuracy when the keyword universe size is 15k). Furthermore, our proposed attack outperforms existing attacks against widely studied countermeasures, achieving roughly $60\%$ and $85\%$ accuracy against the padding and the obfuscation, respectively. In this context, with a large keyword universe ($\geq$3k), it surpasses current state-of-the-art attacks by more than $20\%$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.