Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 14 Feb 2024 (v1), last revised 21 May 2024 (this version, v3)]
Title:Taking GPU Programming Models to Task for Performance Portability
View PDF HTML (experimental)Abstract:Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance portability. In this work, we explore several programming models -- CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL, to study if the performance of these models is consistently good across NVIDIA and AMD GPUs. We use five proxy applications from different scientific domains, create implementations where missing, and use them to present a comprehensive comparative evaluation of the programming models. We provide a Spack scripting-based methodology to ensure reproducibility of experiments conducted in this work. Finally, we attempt to answer the question -- to what extent does each programming model provide performance portability for heterogeneous systems in real-world usage?
Submission history
From: Joshua Hoke Davis [view email][v1] Wed, 14 Feb 2024 05:35:03 UTC (180 KB)
[v2] Wed, 27 Mar 2024 17:58:59 UTC (157 KB)
[v3] Tue, 21 May 2024 04:44:31 UTC (168 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.