Computer Science > Human-Computer Interaction
[Submitted on 26 Jan 2024]
Title:Driving Towards Inclusion: Revisiting In-Vehicle Interaction in Autonomous Vehicles
View PDFAbstract:This paper presents a comprehensive literature review of the current state of in-vehicle human-computer interaction (HCI) in the context of self-driving vehicles, with a specific focus on inclusion and accessibility. This study's aim is to examine the user-centered design principles for inclusive HCI in self-driving vehicles, evaluate existing HCI systems, and identify emerging technologies that have the potential to enhance the passenger experience. The paper begins by providing an overview of the current state of self-driving vehicle technology, followed by an examination of the importance of HCI in this context. Next, the paper reviews the existing literature on inclusive HCI design principles and evaluates the effectiveness of current HCI systems in self-driving vehicles. The paper also identifies emerging technologies that have the potential to enhance the passenger experience, such as voice-activated interfaces, haptic feedback systems, and augmented reality displays. Finally, the paper proposes an end-to-end design framework for the development of an inclusive in-vehicle experience, which takes into consideration the needs of all passengers, including those with disabilities, or other accessibility requirements. This literature review highlights the importance of user-centered design principles in the development of HCI systems for self-driving vehicles and emphasizes the need for inclusive design to ensure that all passengers can safely and comfortably use these vehicles. The proposed end-to-end design framework provides a practical approach to achieving this goal and can serve as a valuable resource for designers, researchers, and policymakers in this field.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.