Computer Science > Machine Learning
[Submitted on 26 Sep 2019]
Title:Overlapping Community Detection with Graph Neural Networks
View PDFAbstract:Community detection is a fundamental problem in machine learning. While deep learning has shown great promise in many graphrelated tasks, developing neural models for community detection has received surprisingly little attention. The few existing approaches focus on detecting disjoint communities, even though communities in real graphs are well known to be overlapping. We address this shortcoming and propose a graph neural network (GNN) based model for overlapping community detection. Despite its simplicity, our model outperforms the existing baselines by a large margin in the task of community recovery. We establish through an extensive experimental evaluation that the proposed model is effective, scalable and robust to hyperparameter settings. We also perform an ablation study that confirms that GNN is the key ingredient to the power of the proposed model.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.