Computer Science > Information Theory
[Submitted on 3 May 2018]
Title:Improved decoding of Folded Reed-Solomon and Multiplicity Codes
View PDFAbstract:In this work, we show new and improved error-correcting properties of folded Reed-Solomon codes and multiplicity codes. Both of these families of codes are based on polynomials over finite fields, and both have been the sources of recent advances in coding theory. Folded Reed-Solomon codes were the first explicit constructions of codes known to achieve list-decoding capacity; multivariate multiplicity codes were the first constructions of high-rate locally correctable codes; and univariate multiplicity codes are also known to achieve list-decoding capacity.
However, previous analyses of the error-correction properties of these codes did not yield optimal results. In particular, in the list-decoding setting, the guarantees on the list-sizes were polynomial in the block length, rather than constant; and for multivariate multiplicity codes, local list-decoding algorithms could not go beyond the Johnson bound.
In this paper, we show that Folded Reed-Solomon codes and multiplicity codes are in fact better than previously known in the context of list-decoding and local list-decoding. More precisely, we first show that Folded RS codes achieve list-decoding capacity with constant list sizes, independent of the block length; and that high-rate univariate multiplicity codes can also be list-recovered with constant list sizes. Using our result on univariate multiplicity codes, we show that multivariate multiplicity codes are high-rate, locally list-recoverable codes. Finally, we show how to combine the above results with standard tools to obtain capacity achieving locally list decodable codes with query complexity significantly lower than was known before.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.