Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 31 Aug 2023]
Title:HPAC-Offload: Accelerating HPC Applications with Portable Approximate Computing on the GPU
View PDFAbstract:The end of Dennard scaling and the slowdown of Moore's law led to a shift in technology trends toward parallel architectures, particularly in HPC systems. To continue providing performance benefits, HPC should embrace Approximate Computing (AC), which trades application quality loss for improved performance. However, existing AC techniques have not been extensively applied and evaluated in state-of-the-art hardware architectures such as GPUs, the primary execution vehicle for HPC applications today.
This paper presents HPAC-Offload, a pragma-based programming model that extends OpenMP offload applications to support AC techniques, allowing portable approximations across different GPU architectures. We conduct a comprehensive performance analysis of HPAC-Offload across GPU-accelerated HPC applications, revealing that AC techniques can significantly accelerate HPC applications (1.64x LULESH on AMD, 1.57x NVIDIA) with minimal quality loss (0.1%). Our analysis offers deep insights into the performance of GPU-based AC that guide the future development of AC algorithms and systems for these architectures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.