Mathematics > Numerical Analysis
[Submitted on 2 Apr 2023]
Title:Convergence analysis of the Monte Carlo method for random Navier--Stokes--Fourier system
View PDFAbstract:In the present paper we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier--Stokes--Fourier system. The Monte Carlo method, which is frequently used for the approximation of statistical moments, is combined with a suitable deterministic discretisation method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to a statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for the Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.