Computer Science > Computation and Language
[Submitted on 21 Jan 2023]
Title:Stress Test for BERT and Deep Models: Predicting Words from Italian Poetry
View PDFAbstract:In this paper we present a set of experiments carried out with BERT on a number of Italian sentences taken from poetry domain. The experiments are organized on the hypothesis of a very high level of difficulty in predictability at the three levels of linguistic complexity that we intend to monitor: lexical, syntactic and semantic level. To test this hypothesis we ran the Italian version of BERT with 80 sentences for a total of 900 tokens mostly extracted from Italian poetry of the first half of last century. Then we alternated canonical and noncanonical versions of the same sentence before processing them with the same DL model. We used then sentences from the newswire domain containing similar syntactic structures. The results show that the DL model is highly sensitive to presence of noncanonical structures. However, DLs are also very sensitive to word frequency and to local non literal meaning compositional effect. This is also apparent by the preference for predicting function vs content words, collocates vs infrequent word phrases. In the paper, we focused our attention on the use of subword units done by BERT for out of vocabulary words.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.