Computer Science > Machine Learning
[Submitted on 22 Jun 2022]
Title:A Study on the Evaluation of Generative Models
View PDFAbstract:Implicit generative models, which do not return likelihood values, such as generative adversarial networks and diffusion models, have become prevalent in recent years. While it is true that these models have shown remarkable results, evaluating their performance is challenging. This issue is of vital importance to push research forward and identify meaningful gains from random noise. Currently, heuristic metrics such as the Inception score (IS) and Frechet Inception Distance (FID) are the most common evaluation metrics, but what they measure is not entirely clear. Additionally, there are questions regarding how meaningful their score actually is. In this work, we study the evaluation metrics of generative models by generating a high-quality synthetic dataset on which we can estimate classical metrics for comparison. Our study shows that while FID and IS do correlate to several f-divergences, their ranking of close models can vary considerably making them problematic when used for fain-grained comparison. We further used this experimental setting to study which evaluation metric best correlates with our probabilistic metrics. Lastly, we look into the base features used for metrics such as FID.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.