Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 May 2022 (v1), last revised 14 Jan 2023 (this version, v4)]
Title:TransBoost: Improving the Best ImageNet Performance using Deep Transduction
View PDFAbstract:This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. Our method significantly improves the ImageNet classification performance on a wide range of architectures, such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T, leading to state-of-the-art transductive performance. Additionally we show that TransBoost is effective on a wide variety of image classification datasets. The implementation of TransBoost is provided at: this https URL .
Submission history
From: Omer Belhasin [view email][v1] Thu, 26 May 2022 13:09:29 UTC (11,975 KB)
[v2] Fri, 27 May 2022 07:43:12 UTC (11,975 KB)
[v3] Tue, 11 Oct 2022 10:06:01 UTC (13,603 KB)
[v4] Sat, 14 Jan 2023 10:59:57 UTC (13,603 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.