Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Apr 2022]
Title:Unsupervised Domain Adaptation with Implicit Pseudo Supervision for Semantic Segmentation
View PDFAbstract:Pseudo-labelling is a popular technique in unsuper-vised domain adaptation for semantic segmentation. However, pseudo labels are noisy and inevitably have confirmation bias due to the discrepancy between source and target domains and training process. In this paper, we train the model by the pseudo labels which are implicitly produced by itself to learn new complementary knowledge about target domain. Specifically, we propose a tri-learning architecture, where every two branches produce the pseudo labels to train the third one. And we align the pseudo labels based on the similarity of the probability distributions for each two branches. To further implicitly utilize the pseudo labels, we maximize the distances of features for different classes and minimize the distances for the same classes by triplet loss. Extensive experiments on GTA5 to Cityscapes and SYNTHIA to Cityscapes tasks show that the proposed method has considerable improvements.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.