Computer Science > Machine Learning
[Submitted on 25 Nov 2024 (v1), last revised 28 Nov 2024 (this version, v2)]
Title:Distributed, communication-efficient, and differentially private estimation of KL divergence
View PDF HTML (experimental)Abstract:A key task in managing distributed, sensitive data is to measure the extent to which a distribution changes. Understanding this drift can effectively support a variety of federated learning and analytics tasks. However, in many practical settings sharing such information can be undesirable (e.g., for privacy concerns) or infeasible (e.g., for high communication costs). In this work, we describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy. We analyze their theoretical properties and present an empirical study of their performance. We explore parameter settings that optimize the accuracy of the algorithm catering to each of the settings; these provide sub-variations that are applicable to real-world tasks, addressing different context- and application-specific trust level requirements. Our experimental results confirm that our private estimators achieve accuracy comparable to a baseline algorithm without differential privacy guarantees.
Submission history
From: Mary Scott [view email][v1] Mon, 25 Nov 2024 15:20:40 UTC (956 KB)
[v2] Thu, 28 Nov 2024 23:06:29 UTC (956 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.