Computer Science > Machine Learning
[Submitted on 29 Oct 2024]
Title:Sequential choice in ordered bundles
View PDF HTML (experimental)Abstract:Experience goods such as sporting and artistic events, songs, videos, news stories, podcasts, and television series, are often packaged and consumed in bundles. Many such bundles are ordered in the sense that the individual items are consumed sequentially, one at a time. We examine if an individual's decision to consume the next item in an ordered bundle can be predicted based on his/her consumption pattern for the preceding items. We evaluate several predictive models, including two custom Transformers using decoder-only and encoder-decoder architectures, fine-tuned GPT-3, a custom LSTM model, a reinforcement learning model, two Markov models, and a zero-order model. Using data from Spotify, we find that the custom Transformer with a decoder-only architecture provides the most accurate predictions, both for individual choices and aggregate demand. This model captures a general form of state dependence. Analysis of Transformer attention weights suggests that the consumption of the next item in a bundle is based on approximately equal weighting of all preceding choices. Our results indicate that the Transformer can assist in queuing the next item that an individual is likely to consume from an ordered bundle, predicting the demand for individual items, and personalizing promotions to increase demand.
Submission history
From: Kriste Krstovski [view email][v1] Tue, 29 Oct 2024 02:35:21 UTC (2,064 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.