Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Sep 2024]
Title:Physics-Informed Building Occupancy Detection: a Switching Process with Markov Regime
View PDF HTML (experimental)Abstract:Energy efficiency of buildings is considered to be one of the major means of achieving the net-zero carbon goal around the world. The big part of the energy savings are supposed to be coming from optimizing the operation of the building heating, ventilation, and air conditioning (HVAC) systems. There is a natural trade-off between the energy efficiency and the indoor comfort level, and finding an optimal operating schedule/regime requires knowing the occupancy of different spaces inside of the building. Moreover, the COVID-19 pandemic has also revealed the need to sustain the high quality of the indoor air in order to reduce the risk of spread of infection. Occupancy detection from indoor sensors is thus an important practical problem. In the present paper, we propose detection of occupancy based on the carbon dioxide measurements inside the building. In particular, a new approach based on the, so-called, switching auto-regressive process with Markov regime is presented and justified by the physical model of the carbon dioxide concentration dynamics. We demonstrate the efficiency of the method compared to simple Hidden Markov approaches on simulated and real-life data. We also show that the model is flexible and can be generalized to account for different ventilation regimes, simultaneously detecting the occupancy and the ventilation rate.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.