Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 2 Sep 2024]
Title:Vortex: Efficient Sample-Free Dynamic Tensor Program Optimization via Hardware-aware Strategy Space Hierarchization
View PDF HTML (experimental)Abstract:Dynamic-shape deep neural networks (DNNs) are rapidly evolving, attracting attention for their ability to handle variable input sizes in real-time applications. However, existing compilation optimization methods for such networks often rely heavily on predefined samples to guide the compilation process, which restricts their adaptability and efficiency. These sample-driven methods struggle to efficiently manage the diverse and unpredictable shapes encountered in real-world scenarios, often resulting in suboptimal performance.
To tackle these issues, we introduce Vortex, a hardware-driven and sample-free compiler tailored for dynamic-shape tensor programs. Vortex capitalizes on detailed hardware information and hierarchizes the strategy space to facilitate high-performance code generation without relying on runtime shape samples. It features a unique bidirectional compilation workflow, combining top-down abstraction for aligning tensor program execution with hardware hierarchies and bottom-up kernel construction to narrow the search space, enabling Vortex to achieve remarkable efficiency. Comprehensive evaluations confirm that Vortex reduces compilation time by $176\times$ compared to the existing dynamic-shape compiler. Additionally, it substantially outperforms existing vendor-provided libraries and dynamic-shape compilers on both CPU and GPU platforms, delivering speedups of $2.53\times$ and $3.01\times$, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.