Computer Science > Machine Learning
[Submitted on 30 Aug 2024]
Title:SafeTail: Efficient Tail Latency Optimization in Edge Service Scheduling via Computational Redundancy Management
View PDF HTML (experimental)Abstract:Optimizing tail latency while efficiently managing computational resources is crucial for delivering high-performance, latency-sensitive services in edge computing. Emerging applications, such as augmented reality, require low-latency computing services with high reliability on user devices, which often have limited computational capabilities. Consequently, these devices depend on nearby edge servers for processing. However, inherent uncertainties in network and computation latencies stemming from variability in wireless networks and fluctuating server loads make service delivery on time challenging. Existing approaches often focus on optimizing median latency but fall short of addressing the specific challenges of tail latency in edge environments, particularly under uncertain network and computational conditions. Although some methods do address tail latency, they typically rely on fixed or excessive redundancy and lack adaptability to dynamic network conditions, often being designed for cloud environments rather than the unique demands of edge computing. In this paper, we introduce SafeTail, a framework that meets both median and tail response time targets, with tail latency defined as latency beyond the 90^th percentile threshold. SafeTail addresses this challenge by selectively replicating services across multiple edge servers to meet target latencies. SafeTail employs a reward-based deep learning framework to learn optimal placement strategies, balancing the need to achieve target latencies with minimizing additional resource usage. Through trace-driven simulations, SafeTail demonstrated near-optimal performance and outperformed most baseline strategies across three diverse services.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.