Computer Science > Graphics
[Submitted on 28 Aug 2024 (v1), last revised 5 Sep 2024 (this version, v2)]
Title:G-Style: Stylized Gaussian Splatting
View PDF HTML (experimental)Abstract:We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting. Gaussian Splatting is a powerful 3D representation for novel view synthesis, as -- compared to other approaches based on Neural Radiance Fields -- it provides fast scene renderings and user control over the scene. Recent pre-prints have demonstrated that the style of Gaussian Splatting scenes can be modified using an image exemplar. However, since the scene geometry remains fixed during the stylization process, current solutions fall short of producing satisfactory results. Our algorithm aims to address these limitations by following a three-step process: In a pre-processing step, we remove undesirable Gaussians with large projection areas or highly elongated shapes. Subsequently, we combine several losses carefully designed to preserve different scales of the style in the image, while maintaining as much as possible the integrity of the original scene content. During the stylization process and following the original design of Gaussian Splatting, we split Gaussians where additional detail is necessary within our scene by tracking the gradient of the stylized color. Our experiments demonstrate that G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
Submission history
From: Renata Georgia Raidou [view email][v1] Wed, 28 Aug 2024 10:43:42 UTC (24,560 KB)
[v2] Thu, 5 Sep 2024 09:05:39 UTC (26,004 KB)
Current browse context:
cs.GR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.