Computer Science > Cryptography and Security
[Submitted on 16 Jul 2024]
Title:Enhancing Covert Communication in Relay Systems Using Multi-Antenna Technique
View PDF HTML (experimental)Abstract:This paper exploits the multi-antenna technique to enhance the covert communication performance in a relay system, where a source S conducts covert communication with a destination D via a relay R, subjecting to the detections of transmissions in the two hops from a single-antenna warden W. To demonstrate the performance gain from adopting the multi-antenna technique, we first consider the scenario when S, R and D all adopt single antenna, and apply hypothesis testing and statistics theories to develop a theoretical framework for the covert performance modeling in terms of detection error probability (DEP) and covert throughput. We then consider the scenario when S, R and D all adopt multiple antennas, and apply the hypothesis testing, statistics and matrix theories to develop corresponding theoretical framework for performance modeling. We further explore the optimal designs of the target rate and transmit power for covert throughput maximization under above both scenarios, subjecting to the constraints of covertness, reliability and transmit power. To solve the optimization problems, we employ Karushi-Kuhn-Tucker (KKT) conditions method in the single antenna scenario and a search algorithm in the multi-antenna scenario. Finally, we provide extensive numerical results to illustrate how the multi-antenna technique can enhance the covert performance in two-hop relay systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.