Computer Science > Computational Complexity
[Submitted on 18 Jun 2024 (v1), last revised 3 Dec 2024 (this version, v3)]
Title:Assembly Theory and its Relationship with Computational Complexity
View PDFAbstract:Assembly theory (AT) quantifies selection using the assembly equation and identifies complex objects that occur in abundance based on two measurements, assembly index and copy number, where the assembly index is the minimum number of joining operations necessary to construct an object from basic parts, and the copy number is how many instances of the given object(s) are observed. Together these define a quantity, called Assembly, which captures the amount of causation required to produce objects in abundance in an observed sample. This contrasts with the random generation of objects. Herein we describe how AT's focus on selection as the mechanism for generating complexity offers a distinct approach, and answers different questions, than computational complexity theory with its focus on minimum descriptions via compressibility. To explore formal differences between the two approaches, we show several simple and explicit mathematical examples demonstrating that the assembly index, itself only one piece of the theoretical framework of AT, is formally not equivalent to other commonly used complexity measures from computer science and information theory including Shannon entropy, Huffman encoding, and Lempel-Ziv-Welch compression. We also include proofs that assembly index is not in the same computational complexity class as these compression algorithms and discuss fundamental differences in the ontological basis of AT, and assembly index as a physical observable, which distinguish it from theoretical approaches to formalizing life that are unmoored from measurement.
Submission history
From: Leroy Cronin Prof [view email][v1] Tue, 18 Jun 2024 01:07:58 UTC (666 KB)
[v2] Sun, 17 Nov 2024 13:11:44 UTC (660 KB)
[v3] Tue, 3 Dec 2024 15:30:15 UTC (3,141 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.