Quantitative Biology > Neurons and Cognition
[Submitted on 8 Apr 2024 (v1), last revised 14 May 2024 (this version, v3)]
Title:Alljoined1 -- A dataset for EEG-to-Image decoding
View PDF HTML (experimental)Abstract:We present Alljoined1, a dataset built specifically for EEG-to-Image decoding. Recognizing that an extensive and unbiased sampling of neural responses to visual stimuli is crucial for image reconstruction efforts, we collected data from 8 participants looking at 10,000 natural images each. We have currently gathered 46,080 epochs of brain responses recorded with a 64-channel EEG headset. The dataset combines response-based stimulus timing, repetition between blocks and sessions, and diverse image classes with the goal of improving signal quality. For transparency, we also provide data quality scores. We publicly release the dataset and all code at this https URL.
Submission history
From: Tazik Shahjahan [view email][v1] Mon, 8 Apr 2024 14:21:34 UTC (8,438 KB)
[v2] Thu, 9 May 2024 07:34:20 UTC (8,439 KB)
[v3] Tue, 14 May 2024 04:47:45 UTC (8,439 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.