Computer Science > Mathematical Software
[Submitted on 25 Mar 2024]
Title:Symbolic and User-friendly Geometric Algebra Routines (SUGAR) for Computations in Matlab
View PDF HTML (experimental)Abstract:Geometric algebra (GA) is a mathematical tool for geometric computing, providing a framework that allows a unified and compact approach to geometric relations which in other mathematical systems are typically described using different more complicated elements. This fact has led to an increasing adoption of GA in applied mathematics and engineering problems. However, the scarcity of symbolic implementations of GA and its inherent complexity, requiring a specific mathematical background, make it challenging and less intuitive for engineers to work with. This prevents wider adoption among more applied professionals. To address this challenge, this paper introduces SUGAR (Symbolic and User-friendly Geometric Algebra Routines), an open-source toolbox designed for Matlab and licensed under the MIT License. SUGAR facilitates the translation of GA concepts into Matlab and provides a collection of user-friendly functions tailored for GA computations, including support for symbolic operations. It supports both numeric and symbolic computations in high-dimensional GAs. Specifically tailored for applied mathematics and engineering applications, SUGAR has been meticulously engineered to represent geometric elements and transformations within two and three-dimensional projective and conformal geometric algebras, aligning with established computational methodologies in the literature. Furthermore, SUGAR efficiently handles functions of multivectors, such as exponential, logarithmic, sinusoidal, and cosine functions, enhancing its applicability across various engineering domains, including robotics, control systems, and power electronics. Finally, this work includes four distinct validation examples, demonstrating SUGAR's capabilities across the above-mentioned fields and its practical utility in addressing real-world applied mathematics and engineering problems.
Current browse context:
cs.MS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.