Computer Science > Robotics
[Submitted on 3 Mar 2024]
Title:Cooperative Automated Driving for Bottleneck Scenarios in Mixed Traffic
View PDF HTML (experimental)Abstract:Connected automated vehicles (CAV), which incorporate vehicle-to-vehicle (V2V) communication into their motion planning, are expected to provide a wide range of benefits for individual and overall traffic flow. A frequent constraint or required precondition is that compatible CAVs must already be available in traffic at high penetration rates. Achieving such penetration rates incrementally before providing ample benefits for users presents a chicken-and-egg problem that is common in connected driving development. Based on the example of a cooperative driving function for bottleneck traffic flows (e.g. at a roadblock), we illustrate how such an evolutionary, incremental introduction can be achieved under transparent assumptions and objectives. To this end, we analyze the challenge from the perspectives of automation technology, traffic flow, human factors and market, and present a principle that 1) accounts for individual requirements from each domain; 2) provides benefits for any penetration rate of compatible CAVs between 0 % and 100 % as well as upward-compatibility for expected future developments in traffic; 3) can strictly limit the negative effects of cooperation for any participant and 4) can be implemented with close-to-market technology. We discuss the technical implementation as well as the effect on traffic flow over a wide parameter spectrum for human and technical aspects.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.