Computer Science > Information Retrieval
[Submitted on 23 Feb 2024]
Title:Item-side Fairness of Large Language Model-based Recommendation System
View PDF HTML (experimental)Abstract:Recommendation systems for Web content distribution intricately connect to the information access and exposure opportunities for vulnerable populations. The emergence of Large Language Models-based Recommendation System (LRS) may introduce additional societal challenges to recommendation systems due to the inherent biases in Large Language Models (LLMs). From the perspective of item-side fairness, there remains a lack of comprehensive investigation into the item-side fairness of LRS given the unique characteristics of LRS compared to conventional recommendation systems. To bridge this gap, this study examines the property of LRS with respect to item-side fairness and reveals the influencing factors of both historical users' interactions and inherent semantic biases of LLMs, shedding light on the need to extend conventional item-side fairness methods for LRS. Towards this goal, we develop a concise and effective framework called IFairLRS to enhance the item-side fairness of an LRS. IFairLRS covers the main stages of building an LRS with specifically adapted strategies to calibrate the recommendations of LRS. We utilize IFairLRS to fine-tune LLaMA, a representative LLM, on \textit{MovieLens} and \textit{Steam} datasets, and observe significant item-side fairness improvements. The code can be found in this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.