Computer Science > Data Structures and Algorithms
[Submitted on 21 Feb 2024 (v1), last revised 12 Jul 2024 (this version, v2)]
Title:Chasing Convex Functions with Long-term Constraints
View PDF HTML (experimental)Abstract:We introduce and study a family of online metric problems with long-term constraints. In these problems, an online player makes decisions $\mathbf{x}_t$ in a metric space $(X,d)$ to simultaneously minimize their hitting cost $f_t(\mathbf{x}_t)$ and switching cost as determined by the metric. Over the time horizon $T$, the player must satisfy a long-term demand constraint $\sum_{t} c(\mathbf{x}_t) \geq 1$, where $c(\mathbf{x}_t)$ denotes the fraction of demand satisfied at time $t$. Such problems can find a wide array of applications to online resource allocation in sustainable energy/computing systems. We devise optimal competitive and learning-augmented algorithms for the case of bounded hitting cost gradients and weighted $\ell_1$ metrics, and further show that our proposed algorithms perform well in numerical experiments.
Submission history
From: Adam Lechowicz [view email][v1] Wed, 21 Feb 2024 18:51:42 UTC (220 KB)
[v2] Fri, 12 Jul 2024 15:44:38 UTC (384 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.