Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Jan 2024]
Title:Pulse Width Modulation Method Applied to Nonlinear Model Predictive Control on an Under-actuated Small Satellite
View PDF HTML (experimental)Abstract:Among various satellite actuators, magnetic torquers have been widely equipped for stabilization and attitude control of small satellites. Although magnetorquers are generally used with other actuators, such as momentum wheels, this paper explores a control method where only a magnetic actuation is available. We applied a nonlinear optimal control method, Nonlinear Model Predictive Control (NMPC), to small satellites, employing the generalized minimal residual (GMRES) method, which generates continuous control inputs. Onboard magnetic actuation systems often find it challenging to produce smooth magnetic moments as a control input; hence, we employ the Pulse Width Modulation (PWM) method, which discretizes a control input and reduces the burden on actuators. In our case, the PWM approach discretizes control torques generated by the NMPC scheme. This study's main contributions are investigating the NMPC and the GMRES method applied to small spacecraft and presenting the PWM control system's feasibility.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.