Computer Science > Artificial Intelligence
[Submitted on 11 Jan 2024 (v1), last revised 27 Jan 2024 (this version, v3)]
Title:A Universal Knowledge Model and Cognitive Architecture for Prototyping AGI
View PDFAbstract:The article identified 42 cognitive architectures for creating general artificial intelligence (AGI) and proposed a set of interrelated functional blocks that an agent approaching AGI in its capabilities should possess. Since the required set of blocks is not found in any of the existing architectures, the article proposes a new cognitive architecture for intelligent systems approaching AGI in their capabilities. As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others. To combine and structure various fragments of knowledge, archigraph models are used, constructed as a development of annotated metagraphs. As components, the cognitive architecture being developed includes machine consciousness, machine subconsciousness, blocks of interaction with the external environment, a goal management block, an emotional control system, a block of social interaction, a block of reflection, an ethics block and a worldview block, a learning block, a monitoring block, blocks of statement and solving problems, self-organization and meta learning block.
Submission history
From: Evgeny Belousov [view email][v1] Thu, 11 Jan 2024 21:05:02 UTC (755 KB)
[v2] Sat, 20 Jan 2024 15:37:28 UTC (998 KB)
[v3] Sat, 27 Jan 2024 19:13:03 UTC (999 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.