Computer Science > Computation and Language
[Submitted on 27 Jan 2023 (v1), last revised 12 Feb 2024 (this version, v4)]
Title:Large Language Models Are Latent Variable Models: Explaining and Finding Good Demonstrations for In-Context Learning
View PDF HTML (experimental)Abstract:In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning. However, existing literature has highlighted the sensitivity of this capability to the selection of few-shot demonstrations. Current understandings of the underlying mechanisms by which this capability arises from regular language model pretraining objectives remain disconnected from the real-world LLMs. This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models. On this premise, we propose an algorithm to select optimal demonstrations from a set of annotated data with a small LM, and then directly generalize the selected demonstrations to larger LMs. We demonstrate significant improvement over baselines, averaged over eight GPT models on eight real-world text classification datasets. We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math word problem dataset. Our empirical findings support our hypothesis that LLMs implicitly infer a latent variable containing task information.
Submission history
From: Xinyi Wang [view email][v1] Fri, 27 Jan 2023 18:59:01 UTC (974 KB)
[v2] Thu, 4 May 2023 15:09:50 UTC (1,044 KB)
[v3] Tue, 17 Oct 2023 11:24:33 UTC (1,080 KB)
[v4] Mon, 12 Feb 2024 23:09:40 UTC (1,080 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.