Zero-Velocity Update-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity for Cableway Bracket Deformation Monitoring
<p>The flowchart of the ZUPT-based GNSS/IMU tightly coupled algorithm with CERAV.</p> "> Figure 2
<p>The environment of cableway bracket.</p> "> Figure 3
<p>Experimental platform used in the test.</p> "> Figure 4
<p>Position relationship between navigation coordinate and cableway coordinate.</p> "> Figure 5
<p>The number of satellites.</p> "> Figure 6
<p>DOP value.</p> "> Figure 7
<p>The position of GNSS, ZUPT-TC, and ZUPT-TC-CERAV in navigation coordinate.</p> "> Figure 8
<p>The position of GNSS, ZUPT-TC, and ZUPT-TC-CERAV in cableway coordinate.</p> "> Figure 9
<p>The attitudes of ZUPT-TC and ZUPT-TC-CERAV.</p> "> Figure 10
<p>The position errors of GNSS, ZUPT-TC and ZUPT-TC-CERAV.</p> "> Figure 11
<p>The attitude errors of ZUPT-TC and ZUPT-TC-CERAV.</p> ">
Abstract
:1. Introduction
2. Extended Kalman Filter for GNSS/IMU Tightly Coupled Algorithm
2.1. The Dynamic and Observation Equations of GNSS/INS Tightly Coupled Algorithm
2.2. Extended Kalman Filter
- (a)
- The gain matrix Kk:
- (b)
- The innovation vector Vk:
- (c)
- The state update vector Xk:
- (d)
- The covariance of state update vector Pk:
3. ZUPT-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity
3.1. ZUPT
3.2. Constraint of the Earth’s Rotation Angular Velocity
3.3. ZUPT-Based GNSS/IMU Tightly Coupled Algorithm with CERAV
4. Experiments and Results Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brida, J.G.; Deidda, M.; Pulina, M. Tourism and transport systems in mountain environments: Analysis of the economic efficiency of cableways in South Tyrol. J. Transp. Geogr. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Ferrarese, M.; Loner, E.; Pulina, M. Demand, business profitability and competitiveness in the cableway system: A multidimensional framework. Res. Transp. Econ. 2021, 90, 101041. [Google Scholar] [CrossRef]
- Peterka, P.; Kačmáry, P.; Krešák, J.; Šimoňák, J.; Bindzár, P.; Mitrík, D. Prediction of fatigue fractures diffusion on the cableway haul rope. Eng. Fail. Anal. 2016, 59, 185–196. [Google Scholar] [CrossRef]
- Konieczny, J.; Pluta, J.; Podsiadło, A. Technical condition diagnosing of the cableway supports’ foundations. Acta Montan. Slovaca 2008, 13, 158–163. [Google Scholar]
- Medina, D.; Vilà-Valls, J.; Hesselbarth, A.; Ziebold, R.; García, J. On the recursive joint position and attitude determination in multi-antenna GNSS platforms. Remote Sens. 2020, 12, 1955. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Lin, H.; Zou, J.; Wang, X.; Yang, F. A novel GNSS attitude determination method based on primary baseline switching for a multi-antenna platform. Remote Sens. 2020, 12, 747. [Google Scholar] [CrossRef]
- Bock, Y.; Shimada, S. Continuously Monitoring GPS Networks for Deformation Measurements. In Proceedings of the Global Positioning System: An Overview: Symposium No. 102, Edinburgh, Scotland, 7–8 August 1989. [Google Scholar]
- DeLoach, S.R. Continuous deformation monitoring with GPS. J. Surv. Eng. 1989, 115, 93–110. [Google Scholar] [CrossRef]
- Leach, M.P.; Hyzak, M. GPS Structural Monitoring as Applied to Cable-Stayed Suspension Bridge. In Proceedings of the XX FIG Congress, Melbourne, Australia, 5–12 March 1994. [Google Scholar]
- Meng, X.; Roberts, G.W.; Dodson, A.H.; Ince, S.; Waugh, S. GNSS for Structural Deformation and Deflection Monitoring: Implementation and Data Analysis. In Proceedings of the 3rd IAG/12th FIG Symposium, Baden, Germany, 22–24 May 2006. [Google Scholar]
- Yuwono, B.D.; Prasetyo, Y. Analysis Deformation Monitoring Techniques Using GNSS Survey and Terrestrial Survey. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Semarang, Indonesia, 29–30 August 2019. [Google Scholar]
- Murray, J.R.; Bartlow, N.; Bock, Y.; Brooks, B.A.; Foster, J.; Freymueller, J.; Hammond, W.C.; Hodgkinson, K.; Johanson, I.; López-Venegas, A.; et al. Regional global navigation satellite system networks for crustal deformation monitoring. Seismol. Res. Lett. 2020, 91, 552–572. [Google Scholar] [CrossRef]
- Gebre-Egziabher, D.; Hayward, R.C.; Powell, J.D. A Low-Cost GPS/Inertial Attitude Heading Reference System (AHRS) for General Aviation Applications. In Proceedings of the IEEE 1998 Position Location and Navigation Symposium, Palm Springs, CA, USA, 20–23 April 1996. [Google Scholar]
- Roth, J.; Kaschwich, C.; Trommer, G.F. Improving GNSS attitude determination using inertial and magnetic field sensors. Inside GNSS 2012, 7, 54–62. [Google Scholar]
- Medina, D.; Centrone, V.; Ziebold, R.; García, J. Attitude Determination via GNSS Carrier Phase and Inertial Aiding. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019. [Google Scholar]
- Zhang, Q.; Niu, X.; Shi, C. Impact assessment of various IMU error sources on the relative accuracy of the GNSS/INS systems. IEEE Sens. J. 2020, 20, 5026–5038. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, W.; Zhang, Y.; Duan, R.; Lv, X.; Zhang, X. Attitude variometric approach using DGNSS/INS integration to detect deformation in railway track irregularity measuring. J. Geod. 2019, 93, 1571–1587. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Niu, X. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6503–6515. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.; Zhang, X.; Zhang, Y.; Yang, S. A novel INS/ADS integrated navigation method based on INS error model-aided unbiased converted measurement. Meas. Sci. Technol. 2022, 33, 065006. [Google Scholar] [CrossRef]
- Grejner-Brzezinska, D.A.; Da, R.; Toth, C. GPS error modeling and OTF ambiguity resolution for high-accuracy GPS/INS integrated system. J. Geod. 1998, 72, 626–638. [Google Scholar] [CrossRef]
- Niu, X.; Chen, Q.; Kuang, J.; Liu, J. Return of inertial surveying—Trend or illusion? In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium, Savannah, GA, USA, 11–14 April 2016. [Google Scholar]
- Chen, Q.; Niu, X.; Zuo, L.; Zhang, T.; Xiao, F.; Liu, Y.; Liu, J. A Railway Track Geometry Measuring Trolley System Based on Aided INS. Sensors 2018, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Q.; Niu, X.; Liu, J. Semi-analytical assessment of the relative accuracy of the GNSS/INS in railway track irregularity measurements. Satell. Navig. 2021, 2, 1–16. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, H.; Kuang, J.; Luo, Y.; Niu, X. Rapid Initial Heading Alignment for MEMS Land Vehicular GNSS/INS Navigation System. IEEE Sens. J. 2023, 23, 7656–7666. [Google Scholar] [CrossRef]
- Xu, P.; Shi, C.; Fang, R.; Liu, J.; Niu, X.; Zhang, Q.; Yanagidani, T. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units. J. Geod. 2013, 87, 361–372. [Google Scholar] [CrossRef]
- Ren, Z.; Dai, W.J.; Yu, W.K.; Zheng, B.; Pan, L. Accuracy Evaluation of GNSS/INS Tight Combination Vertical Vibration Monitoring in Complex Environments. J. Navig. Position. 2022, 4, 81–88. [Google Scholar]
- Jia, X.X.; Zhao, D.Q.; Xiao, G.R.; Yang, X.C.; Yang, C.Y.; Lai, L.G. GNSS/IMU/Visual Multi source Fusion Localization Method Based on Refined Pre integration. J. Beijing Univ. Aeronaut. Astronaut. 2023, 1–10. [Google Scholar]
- Yan, W.; Bastos, L.; Gonçalves, J.A.; Magalhães, A.; Xu, T. Image-aided platform orientation determination with a GNSS/low-cost IMU system using robust-adaptive Kalman filter. GPS Solut. 2018, 22, 1–12. [Google Scholar] [CrossRef]
- Qin, J.; Qiao, L.; Chen, J.; Wan, J.; Jiang, M.; Hu, C. Analysis of the Working Cable System of Single-Span Circulating Ropeway. In Proceedings of the 2nd International Conference on Design, Mechanical and Material Engineering (D2ME 2017), Melbourne, Australia, 14–16 September 2017. [Google Scholar]
- Nikšić, M.; Gašparović, S. Geographic and traffic aspects of possibilities for implementing ropeway systems in passenger transport. Promet Traffic Transp. 2010, 22, 389–398. [Google Scholar] [CrossRef]
- Chen, H.W.; Lu, Y.H. Signal monitoring method for passenger ropeway based on information fusion. Electromechanical Eng. 2012, 29, 4. [Google Scholar]
- Zhang, J.H. Development of a Parallel Cableway Control and Monitoring System. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2018. [Google Scholar]
- Liu, G.S.; Li, X.Y.; Li, N.; Ding, K.Q. Research and development of passenger ropeway monitoring and health diagnosis cloud service system platform. Saf. Spec. Equip. China 2021, 37, 6. [Google Scholar]
- Malekinejad, P. Steel Wire Rope Condition Monitoring by Non-Destructive Investigation and Evaluation while on Installation/in Service. In Proceedings of the 4th Studental Petroleum Engineering Conference, Ahwaz, Iran, 7–9 March 2000. [Google Scholar]
- Lagerev, A.V.; Tarichko, V.I.; Lagerev, I.A. Probability-Temporal Analysis of Reliability Indicators Kinetics at the Stage of Designing a Rope System of a Mobile Transport and Reloading Ropeway; Academician I.G. Petrovskii Bryansk State University: Bryansk, Russia, 2020; pp. 256–275. [Google Scholar]
- Sukhorukov, V.V. Steel Rope Diagnostics by Magnetic NDT: From Defect Detection to Automated Condition Monitoring. Mater. Eval. 2021, 79, 438–445. [Google Scholar] [CrossRef]
- Keuschnig, M.; Otto, J.C.; Schrott, L. Application of GPR on Rough Terrain Surfaces for Monitoring Issues Using a Simple Ropeway System. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Villa, L.F.; Montoyab, O.Q.; Castañedaa, L.; Mejíac, G. Fuzzy Inference System for Modelling Failure Modes in a Ropeway for Massive Transportation. In Proceedings of the 2015 International Conference on Artificial Intelligence and Industrial Engineering, Phuket, Thailand, 26–27 July 2015. [Google Scholar]
- Zhang, W. Research on the Safety Monitoring Device for the Ropeway Support of Cyclic Detachment Gripper. Shanxi Youth 2013, 3, 6. [Google Scholar]
- Zhang, J.J.; Shen, G.T.; Wu, Z.W.; Yuan, Y.L. Application of Acoustic Emission Technology in Condition Monitoring of Rolling Bearings in Passenger Cableways. In Proceedings of the 14th China Symposium on Acoustic Emission, Madrid, Spain, 12–14 November 2014. [Google Scholar]
- Zhao, T.; Ahamed, M.J. Pseudo-zero velocity re-detection double threshold zero-velocity update (ZUPT) for inertial sensor-based pedestrian navigation. IEEE Sens. J. 2021, 21, 13772–13785. [Google Scholar] [CrossRef]
IMU | Bias Instability | Random Walk |
---|---|---|
Accelerometer | 0.1 mg | 0.029 m/s/sqrt(h) |
Gyroscope | 6 deg/h | 0.3 deg/sqrt(h) |
Position (m) | Attitude (deg) | |||||
---|---|---|---|---|---|---|
X | Y | Z | Roll | Pitch | Yaw | |
ZUPT-TC | 0.0619 | 0.3340 | 0.0277 | 0.0331 | 0.0114 | 0.8423 |
ZUPT-TC-CERAV | 0.0047 | 0.0030 | 0.0087 | 0.0326 | 0.0114 | 0.0104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Q.; Yu, R.; Yu, Z.; Zhang, C.; He, X. Zero-Velocity Update-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity for Cableway Bracket Deformation Monitoring. Sensors 2023, 23, 9862. https://doi.org/10.3390/s23249862
Zhang S, Zhang Q, Yu R, Yu Z, Zhang C, He X. Zero-Velocity Update-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity for Cableway Bracket Deformation Monitoring. Sensors. 2023; 23(24):9862. https://doi.org/10.3390/s23249862
Chicago/Turabian StyleZhang, Song, Qiuzhao Zhang, Ruipeng Yu, Zhangjun Yu, Chu Zhang, and Xinyue He. 2023. "Zero-Velocity Update-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity for Cableway Bracket Deformation Monitoring" Sensors 23, no. 24: 9862. https://doi.org/10.3390/s23249862
APA StyleZhang, S., Zhang, Q., Yu, R., Yu, Z., Zhang, C., & He, X. (2023). Zero-Velocity Update-Based GNSS/IMU Tightly Coupled Algorithm with the Constraint of the Earth’s Rotation Angular Velocity for Cableway Bracket Deformation Monitoring. Sensors, 23(24), 9862. https://doi.org/10.3390/s23249862