Experimentation in 5G and beyond Networks: State of the Art and the Way Forward
1. Introduction
2. Overview of Published Papers
- A. Díaz Zayas, G. Caso, Ö. Alay, P. Merino, A. Brunstrom, D. Tsolkas, and H. Koumaras. A Modular Experimentation Methodology for 5G Deployments: The 5GENESIS Approach. Sensors, 20(22):6652, 2020.
- V. Sanchez-Aguero, I. Vidal, F. Valera, B. Nogales, L. L. Mendes, W. Damascena Dias, and A. Carvalho Ferreira. Deploying an NFV-based Experimentation Scenario for 5G Solutions in Underserved Areas. Sensors, 21(5):1897, 2021.
- A. Fernández-Fernández, C. Colman-Meixner, L. Ochoa-Aday, A. Betzler, H. Khalili, M. S. Siddiqui, G. Carrozzo, S. Figuerola, R. Nejabati, and D. Simeonidou. Validating a 5G-Enabled Neutral Host Framework in City-Wide Deployments. Sensors, 21(23):8103, 2021.
- K. Kiela, M. Jurgo, V. Macaitis, and R. Navickas. 5G Standalone and 4G Multi-Carrier Network-in-a-Box Using a Software Defined Radio Framework. Sensors, 21(16):5653, 2021.
- W. de Oliveira, J. O. R. Batista Jr, T. Novais, S. T. Takashima, L. R. Stange, M. Martucci Jr, C. E. Cugnasca, and G. Bressan. OpenCare5G: O-RAN in Private Network for Digital Health Applications. Sensors, 23(2):1047, 2023.
- Y. Tian, Y. Bai, and D. Liu. Low-Latency QC-LDPC Encoder Design for 5G NR. Sensors, 21(18):6266, 2021.
- H. A. Kholidy. Multi-layer Attack Graph Analysis in the 5G Edge Network Using a Dynamic Hexagonal Fuzzy Method. Sensors, 22(1):9, 2021.
- Y. Z. Bekele and Y.-J. Choi. Random Access Using Deep Reinforcement Learning in Dense Mobile Networks. Sensors, 21(9):3210, 2021.
- D. G. Riviello, R. Tuninato, E. Zimaglia, R. Fantini, and R. Garello. Implementation of Deep-Learning-based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator. Sensors, 23(2):910, 2023.
- L. Tsipi, M. Karavolos, P. S. Bithas, and D. Vouyioukas. Machine Learning-based Methods for Enhancement of UAV-NOMA and D2D Cooperative Networks. Sensors, 23(6):3014, 2023.
2.1. 5G Testing and Validation
2.2. 5G Enhancements
2.3. Use of AI/ML for B5G Systems
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, Requirements, Key Technologies and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Narayanan, A.; Ramadan, E.; Carpenter, J.; Liu, Q.; Liu, Y.; Qian, F.; Zhang, Z.L. A First Look at Commercial 5G Performance on Smartphones. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 894–905. [Google Scholar]
- Narayanan, A.; Zhang, X.; Zhu, R.; Hassan, A.; Jin, S.; Zhu, X.; Zhang, X.; Rybkin, D.; Yang, Z.; Mao, Z.M.; et al. A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications. In Proceedings of the ACM SIGCOMM 2021 Conference, Virtual Event, 23–27 August 2021; pp. 610–625. [Google Scholar]
- Xu, D.; Zhou, A.; Zhang, X.; Wang, G.; Liu, X.; An, C.; Shi, Y.; Liu, L.; Ma, H. Understanding Operational 5G: A First Measurement Study on its Coverage, Performance and Energy Consumption. In Proceedings of the ACM SIGCOMM 2020 Conference, Virtual Event, 10–14 August 2020; pp. 479–494. [Google Scholar]
- Kousias, K.; Rajiullah, M.; Caso, G.; Alay, O.; Brunstorm, A.; De Nardis, L.; Neri, M.; Ali, U.; Di Benedetto, M.G. Coverage and Performance Analysis of 5G Non-Standalone Deployments. In Proceedings of the ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization (WiNTECH’22), Sydney, NSW, Australia, 17 October 2022; pp. 61–68. [Google Scholar]
- Fiandrino, C.; Juárez Martínez-Villanueva, D.; Widmer, J. Uncovering 5G Performance on Public Transit Systems with an App-based Measurement Study. In Proceedings of the ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM’22), Montreal, QC, Canada, 24–28 October 2022; pp. 65–73. [Google Scholar]
- Wang, C.X.; Di Renzo, M.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef]
- Kousias, K.; Rajiullah, M.; Caso, G.; Ali, U.; Alay, O.; Brunstrom, A.; De Nardis, L.; Neri, M.; Di Benedetto, M.G. A Large-Scale Dataset of 4G, NB-IoT, and 5G Non-Standalone Network Measurements. IEEE Commun. Mag. 2023. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Baldemair, R.; Cheng, J.F.T.; Parkvall, S.; Larsson, D.C.; Koorapaty, H.; Frenne, M.; Falahati, S.; Grovlen, A.; et al. 5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology. IEEE Commun. Stand. Mag. 2019, 3, 30–37. [Google Scholar] [CrossRef]
- Dahlman, E.; Parkvall, S.; Skold, J. 5G NR: The Next Generation Wireless Access Technology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Rommer, S.; Hedman, P.; Olsson, M.; Frid, L.; Sultana, S.; Mulligan, C. 5G Core Networks: Powering Digitalization; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Yousaf, F.Z.; Bredel, M.; Schaller, S.; Schneider, F. NFV and SDN—Key Technology Enablers for 5G Networks. IEEE J. Sel. Areas Commun. 2017, 35, 2468–2478. [Google Scholar] [CrossRef]
- Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A Survey on 5G Usage Scenarios and Traffic Models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Y.; Chen, Z.; Liu, L.; Wang, Q.; Li, N. 5G Deployment: Standalone vs. Non-Standalone from the Operator Perspective. IEEE Commun. Mag. 2020, 58, 83–89. [Google Scholar] [CrossRef]
- Polese, M.; Bonati, L.; D’oro, S.; Basagni, S.; Melodia, T. Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE Commun. Surv. Tutor. 2023, 25, 1376–1411. [Google Scholar] [CrossRef]
- Bioglio, V.; Condo, C.; Land, I. Design of Polar Codes in 5G New Radio. IEEE Commun. Surv. Tutor. 2020, 23, 29–40. [Google Scholar] [CrossRef]
- Ahmad, I.; Kumar, T.; Liyanage, M.; Okwuibe, J.; Ylianttila, M.; Gurtov, A. Overview of 5G Security Challenges and Solutions. IEEE Commun. Stand. Mag. 2018, 2, 36–43. [Google Scholar] [CrossRef]
- Anderson, H. Introduction to Nessus. Retrieved Symantec 2003. [Google Scholar]
- Toor, W.T.; Basit, A.; Maroof, N.; Khan, S.A.; Saadi, M. Evolution of Random Access Process: From Legacy Networks to 5G and Beyond. Trans. Emerg. Telecommun. Technol. 2022, 33, e3776. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S.; Li, X. AI for CSI Feedback Enhancement in 5G-Advanced. IEEE Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Papadopoulos, H.; Wang, C.; Bursalioglu, O.; Hou, X.; Kishiyama, Y. Massive MIMO Technologies and Challenges Towards 5G. IEICE Trans. Commun. 2016, 99, 602–621. [Google Scholar] [CrossRef]
- Tran, Q.N.; Vo, N.S.; Nguyen, Q.A.; Bui, M.P.; Phan, T.M.; Lam, V.V.; Masaracchia, A. D2D Multi-Hop Multi-Path Communications in B5G Networks: A Survey on Models, Techniques, and Applications. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2021, 7, e3. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, J.; Zhong, H.; Bolodurina, I.; Liu, L. Intelligent Drone-Assisted Anonymous Authentication and Key Agreement for 5G/B5G Vehicular Ad-Hoc Networks. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2982–2994. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caso, G.; Alay, Ö.; Brunstrom, A.; Koumaras, H.; Díaz Zayas, A.; Frascolla, V. Experimentation in 5G and beyond Networks: State of the Art and the Way Forward. Sensors 2023, 23, 9671. https://doi.org/10.3390/s23249671
Caso G, Alay Ö, Brunstrom A, Koumaras H, Díaz Zayas A, Frascolla V. Experimentation in 5G and beyond Networks: State of the Art and the Way Forward. Sensors. 2023; 23(24):9671. https://doi.org/10.3390/s23249671
Chicago/Turabian StyleCaso, Giuseppe, Özgü Alay, Anna Brunstrom, Harilaos Koumaras, Almudena Díaz Zayas, and Valerio Frascolla. 2023. "Experimentation in 5G and beyond Networks: State of the Art and the Way Forward" Sensors 23, no. 24: 9671. https://doi.org/10.3390/s23249671
APA StyleCaso, G., Alay, Ö., Brunstrom, A., Koumaras, H., Díaz Zayas, A., & Frascolla, V. (2023). Experimentation in 5G and beyond Networks: State of the Art and the Way Forward. Sensors, 23(24), 9671. https://doi.org/10.3390/s23249671