Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade
<p>Flexible robots (<b>a</b>) fish [<a href="#B10-sensors-22-04860" class="html-bibr">10</a>] (<b>b</b>) jump-sketch [<a href="#B11-sensors-22-04860" class="html-bibr">11</a>] (<b>c</b>) crawl -sketch [<a href="#B13-sensors-22-04860" class="html-bibr">13</a>] (<b>d</b>) star fish-sketch [<a href="#B23-sensors-22-04860" class="html-bibr">23</a>] (<b>e</b>) roll [<a href="#B41-sensors-22-04860" class="html-bibr">41</a>].</p> "> Figure 1 Cont.
<p>Flexible robots (<b>a</b>) fish [<a href="#B10-sensors-22-04860" class="html-bibr">10</a>] (<b>b</b>) jump-sketch [<a href="#B11-sensors-22-04860" class="html-bibr">11</a>] (<b>c</b>) crawl -sketch [<a href="#B13-sensors-22-04860" class="html-bibr">13</a>] (<b>d</b>) star fish-sketch [<a href="#B23-sensors-22-04860" class="html-bibr">23</a>] (<b>e</b>) roll [<a href="#B41-sensors-22-04860" class="html-bibr">41</a>].</p> "> Figure 2
<p>Actuator mechanisms (<b>a</b>) flexible pump [<a href="#B52-sensors-22-04860" class="html-bibr">52</a>] (<b>b</b>) bi-directional servo [<a href="#B54-sensors-22-04860" class="html-bibr">54</a>] (<b>c</b>) linear actuator–sketch [<a href="#B73-sensors-22-04860" class="html-bibr">73</a>].</p> "> Figure 3
<p>Artificial skeleton muscle [<a href="#B91-sensors-22-04860" class="html-bibr">91</a>].</p> ">
Abstract
:1. Introduction
2. Flexible and Soft Robots
3. Drivers and Servo Actuations
4. Artificial Muscle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohd-Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Mishra, J.; Singh, T. Shape memory alloys and their potential application: A Review. Int. J. Curr. Res. 2017, 9, 59186–59192. [Google Scholar]
- Hu, K.; Rabenorosoa, K.; Ouisse, M. A Review of SMA-Based Actuators for Bidirectional Rotational Motion: Application to Origami Robots. Front. Robot. AI 2021, 8, 678486. [Google Scholar] [CrossRef] [PubMed]
- Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Shape Memory Alloy (SMA)-Based Exoskeletons for Upper Limb Rehabilitation. In Artificial Muscles [Working Title]; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Chung, Y.S.; Lee, J.H.; Jang, J.H.; Choi, H.R.; Rodrigue, H. Jumping tensegrity robot based on torsionally prestrained SMA Springs. ACS Appl. Mater. Interfaces 2019, 11, 40793–40799. [Google Scholar] [CrossRef]
- Kheirikhah, M.M.; Rabiee, S.; Edalat, M.E. A Review of Shape Memory Alloy Actuators in Robotics. In RoboCup 2010: Robot Soccer World Cup XIV; Lecture Notes in Computer Science; Ruiz-del-Solar, J., Chown, E., Plöger, P.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6556. [Google Scholar] [CrossRef]
- Soother, D.K.; Jawaid, D.; Bhawani Shankar, C. Challenges for practical applications of shape memory alloy actuators. Mater. Res. Express 2020, 7, 073001. [Google Scholar] [CrossRef]
- Ruth, D.J.S. Design Concepts for NiTiNOL Wires to Function as a Sensor. Trans. Indian Natl. Acad. Eng. Springer 2021, 6, 523–531. [Google Scholar] [CrossRef]
- Terryn, S.; Brancart, J.; Lefeber, D.; Van Assche, G.; Vanderborght, B. Self-healing soft pneumatic robots. Sci. Robot. 2017, 2, 9. [Google Scholar] [CrossRef]
- François, S.; Olivier, P.; Laurent, B.; Bernard, B. Soft Robots Manufacturing: A Review. Front. Robot. AI 2018, 5, 84. [Google Scholar]
- Hadi, A.; Yousefi-Koma, A.; Moghaddam, M.M.; Elahinia, M.; Ghazavi, A. Developing a novel SMA-actuated robotic module. Sens. Actuators A Phys. 2010, 162, 72–81. [Google Scholar] [CrossRef]
- Ho, T.; Lee, S. Design of an SMA-actuated jumping robot. In Proceedings of the 2010 IEEE Conference on Robotics, Automation and Mechatronics, Xi’an, China, 4–7 August 2010; pp. 589–594. [Google Scholar]
- Koh, J.; An, S.; Cho, K. Finger-sized climbing robot using artificial proleg. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 610–615. [Google Scholar]
- Gao, H.; Du, J.; Tang, M.; Shi, W. Research on a new type peristaltic micro in-pipe robot. In Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, China, 22–25 May 2011; pp. 26–30. [Google Scholar]
- Khodayari, A.; Kheirikhah, M.M.; Rabiee, S. Fuzzy PID controller design for snake robot based SMA actuators. In Proceedings of the 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 November 2011; pp. 274–278. [Google Scholar]
- Rossi, C.; Coral, W.; Colorado, J.; Barrientos, A. A motor-less and gear-less bio-mimetic robotic fish design. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3646–3651. [Google Scholar]
- Kohut, N.J.; Hoover, A.M.; Ma, K.Y.; Baek, S.S.; Fearing, R.S. MEDIC: A legged millirobot utilizing novel obstacle traversal. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 802–808. [Google Scholar]
- Yan, Q.; Wang, L.; Liu, B.; Yang, J.; Zhang, S. A Novel Implementation of a Flexible Robotic Fin Actuated by Shape Memory Alloy. J. Bionic Eng. 2012, 9, 156–165. [Google Scholar] [CrossRef]
- Noh, M.; Kim, S.-W.; An, S.; Koh, J.-S.; Cho, K.-J. Flea-Inspired Catapult Mechanism for Miniature Jumping Robots. IEEE Trans. Robot. 2012, 28, 1007–1018. [Google Scholar] [CrossRef]
- Guo, S.; Li, M.; Shi, L.; Mao, S. A smart actuator-based underwater microrobot with two motion attitudes. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Sichuan, China, 5–8 August 2012; pp. 1675–1680. [Google Scholar]
- Follador, M.; Cianchetti, M.; Laschi, C. Development of the functional unit of a completely soft octopus-like robotic arm. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 640–645. [Google Scholar]
- Singh, P.; Ananthasuresh, G.K. A Compact and Compliant External Pipe-Crawling Robot. IEEE Trans. Robot. 2012, 29, 251–260. [Google Scholar] [CrossRef]
- Seok, S.; Onal, C.D.; Cho, K.-J.; Wood, R.J.; Rus, D.; Kim, S. Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators. IEEE/ASME Trans. Mechatron. 2012, 18, 1485–1497. [Google Scholar] [CrossRef]
- Mao, S.; Dong, E.; Xu, M.; Jin, H.; Li, F.; Yang, J. Design and development of starfish-like robot: Soft bionic platform with multi-motion using SMA actuators. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 91–96. [Google Scholar]
- Abiri, R.; Kabganian, M.; Nadafi, R. Fabrication, modeling and set-point control of a new flexible microrobot module (FMM) by using SMA actuators. In Proceedings of the 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 13–15 February 2013; pp. 141–146. [Google Scholar]
- Février, A.; Fauvel, Q.; Carbonel, N.; Tondu, B.; Soueres, P. Big-Stiquito: An enlarged and faster version of the autonomous Stiquito hexapod robot. In Proceedings of the 2013 IEEE International Conference on Mechatronics (ICM), Vicenza, Italy, 27 February–1 March 2013; pp. 329–334. [Google Scholar]
- Mao, S.; Dong, E.; Jin, H.; Xu, M.; Zhang, S.; Yang, J.; Low, K.H. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. J. Bionic Eng. 2014, 11, 400–411. [Google Scholar] [CrossRef]
- Colorado, J.; Rossi, C.; Barrientos, A.; Patino, D. The influence of bat wings for producing efficient net body forces in bio-inspired flapping robots. In Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria, 1–3 September 2014; pp. 528–532. [Google Scholar]
- Coral, W.; Rossi, C.; Martin, I.P. Bio-inspired morphing caudal fin using shape memory alloy composites for a fish-like robot: Design, fabrication and analysis. In Proceedings of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015; pp. 336–343. [Google Scholar]
- Hadi, A.; Bahmani, M.M.; Davari, M.J. Developing a bio inspired steerable robot actuated by shape memory alloy springs. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 330–335. [Google Scholar]
- Sfakiotakis, M.; Kazakidi, A.; Evdaimon, T.; Chatzidaki, A.; Tsakiris, D.P. Multi-arm robotic swimmer actuated by antagonistic SMA springs. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1540–1545. [Google Scholar]
- Kennedy, J.L.; Fontecchio, A.K. Textile-based shape memory alloy locomotive robot. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 22–24 April 2017; pp. 237–241. [Google Scholar]
- Pillai, R.R.; Anas, S.; Ali, A.; Jameel, O. Design, development and locomotion control of compliant soft mobile robot. In Proceedings of the 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), Science City, Kolkata, 28–29 April 2017; pp. 1–6. [Google Scholar]
- Li, S.; Li, J. A robot fish of autonomous navigation with single caudal fin. In Proceedings of the 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, China, 29–31 December 2017; pp. 276–279. [Google Scholar]
- Ren, Z.; Wang, H.; Chen, W. Frog-inspired hind limb for jumping robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 605–610. [Google Scholar]
- Alcaide, J.O.; Pearson, L.; Rentschler, M.E. Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4338–4345. [Google Scholar]
- Pillai R, R.; Murali, G.; Gopal, M. Modeling and Simulation of a Shape Memory Alloy Spring Actuated Flexible Parallel Manipulator. Procedia Comput. Sci. 2018, 133, 895–904. [Google Scholar] [CrossRef]
- Sinkar, A.; Pandey, A.; Mehta, C.S.K.; Jayachandran, S.K.A.; Palani, I. Design and Development of wall climbing Hexapod Robot with SMA actuated suction gripper. Procedia Comput. Sci. 2018, 133, 222–229. [Google Scholar] [CrossRef]
- Akbari, S.; Sakhaei, A.H.; Panjwani, S.; Kowsari, K.; Serjouei, A.; Ge, Q. Multimaterial 3D Printed Soft Actuators Powered by Shape Memory Alloy Wires. Sens. Actuators A Phys. 2019, 290, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Takanishi, A.; Ishii, H. Development of Shape Memory Alloy Driven Small Legged Robot Capable of Walking on a Flat Ground and Climbing a Leaning Tree. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 352–357. [Google Scholar]
- Yang, H.; Xu, M.; Li, W.; Zhang, S. Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Trans. Ind. Electron. 2018, 66, 6108–6116. [Google Scholar] [CrossRef]
- Mansour, N.A.; Jang, T.; Baek, H.; Shin, B.; Ryu, B.; Kim, Y. Compliant closed-chain rolling robot using modular unidirectional SMA actuators. Sens. Actuators A Phys. 2020, 310, 112024. [Google Scholar] [CrossRef]
- Sonaike, K.; Sadati, S.M.H.; Bergeles, C.; Walker, I.D. Exploiting the Morphology of a Shape Memory Spring as the Active Backbone of a Highly Dexterous Tendril Robot (ATBR). In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NA, USA, 25–29 October 2020; pp. 8801–8806. [Google Scholar]
- Chen, Z.; Liu, Y. Design and Simulation Analysis of Bionic Devil Fish. In Proceedings of the 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA), Shanghai, China, 16–18 October 2020; pp. 54–58. [Google Scholar]
- Copaci, D.; Muñoz, J.; González, I.; Monje, C.A. SMA-Driven Soft Robotic Neck: Design, Control and Validation. IEEE Access 2020, 8, 199492–199502. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Terrile, S.; Barrientos, A. Soft Underwater Robot Actuated by Shape-Memory Alloys “JellyRobcib” for Path Tracking through Fuzzy Visual Control. Appl. Sci. 2020, 10, 7160. [Google Scholar] [CrossRef]
- Patterson, Z.J.; Sabelhaus, A.P.; Chin, K.; Hellebrekers, T.; Majidi, C. An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NA, USA, 25–29 October 2020; pp. 8758–8764. [Google Scholar]
- Nguyen, X.-T.; Calderón, A.A.; Rigo, A.; Ge, J.Z.; Pérez-Arancibia, N.O. SMALLBug: A 30-mg Crawling Robot Driven by a High-Frequency Flexible SMA Microactuator. IEEE Robot. Autom. Lett. 2020, 5, 6796–6803. [Google Scholar] [CrossRef]
- Lan, C.-C.; Fan, C.-H. An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens. Actuators A Phys. 2010, 163, 323–332. [Google Scholar] [CrossRef]
- Khodayari, A.; Kheirikhah, M.M.; Zarefar, B. Fabrication a practical SMA actuated gripper. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 November 2011; pp. 2739–2743. [Google Scholar]
- Jung, G.; Koh, J.; Cho, K. Meso-scale compliant gripper inspired by caterpillar’s proleg. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1831–1836. [Google Scholar]
- Fu, G.; Menciassi, A.; Dario, P. Design of a miniature switchable connection system for stochastic modular robots. Sens. Actuators A Phys. 2012, 173, 267–276. [Google Scholar] [CrossRef]
- Keerthi Sagar, S.N.; Sreekumar, M. Miniaturized Flexible Flow Pump Using SMA Actuator. Procedia Eng. 2013, 64, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Obaji, M.O.; Zhang, S. Investigation into the force distribution mechanism of a soft robot gripper modeled for picking complex objects using embedded shape memory alloy actuators. In Proceedings of the 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013; pp. 84–90. [Google Scholar]
- Selvarani Ruth, J.; Nakshatharan, S.; Dhanalakshmi, K. Differential resistance feedback control of a self-sensing shape memory alloy actuated system. ISA Trans. 2014, 53, 289–297. [Google Scholar] [CrossRef]
- Hattori, S.; Hara, M.; Nabae, H.; Hwang, D.; Higuchi, T. Design of an impact drive actuator using a shape memory alloy wire. Sens. Actuators A Phys. 2014, 219, 47–57. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, T.; Liu, D.; Ma, C.; Yuan, X. A fuzzy PID-controlled SMA actuator for a two-DOF joint. Chin. J. Aeronaut. 2014, 27, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Yuan, Z.; Zhang, C.; Barrientos, A.; Coral, W. Shape memory alloy-based High Phase Order Motor. In Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria, 2–4 September 2014; pp. 562–568. [Google Scholar]
- Shaw, J.; Lee, J. Force control of a robot gripper featuring shape memory alloy actuators. In Proceedings of the 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, Taiwan, 6–8 June 2014; pp. 23–28. [Google Scholar]
- Villoslada, Á.; Escudero, N.; Martín, F.; Flores-Caballero, A.; Rivera, C.; Collado, M.; Moreno, L. Position control of a shape memory alloy actuator using a four-term bilinear PID controller. Sens. Actuators A Phys. 2015, 236, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Nakshatharan, S.S.; Dhanalakshmi, K.; Ruth, J. Fuzzy based sliding surface for shape memory alloy wire actuated classical super-articulated control system. Appl. Soft Comput. 2015, 32, 580–589. [Google Scholar] [CrossRef]
- Ruth, D.J.S.; Dhanalakshmi, K.; Nakshatharan, S.S. Bidirectional angular control of an integrated sensor/actuator shape memory alloy based system. Measurement 2015, 69, 210–221. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, Y.; Wee, L.B.; Yu, H. Design and control of a novel compliant differential shape memory alloy actuator. Sens. Actuators A Phys. 2015, 225, 71–80. [Google Scholar] [CrossRef]
- Josephine, S.R.; Dhanalakshmi, K. Shape memory alloy with bi-functionality in the master system to control a slave. Sens. Actuators A Phys. 2016, 238, 351–360. [Google Scholar] [CrossRef]
- Wang, W.; Rodrigue, H.; Kim, H., II; Han, M.-W.; Ahn, S.-H. Soft composite hinge actuator and application to compliant robotic gripper. Compos. Part B Eng. 2016, 98, 397–405. [Google Scholar] [CrossRef]
- Kim, H., II; Han, M.-W.; Song, S.-H.; Ahn, S.-H. Soft morphing hand driven by SMA tendon wire. Compos. Part B Eng. 2016, 105, 138–148. [Google Scholar] [CrossRef]
- Rad, N.F.; Yousefi-Koma, A.; Rezaei, H.; Bazrafshani, M.A. Design and fabrication of a gripper actuated by shape memory alloy spring. In Proceedings of the 2016 4th International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 26–28 October 2016; pp. 455–458. [Google Scholar]
- Yuen, M.C.; Bilodeau, R.A.; Kramer, R.K. Active Variable Stiffness Fibers for Multifunctional Robotic Fabrics. IEEE Robot. Autom. Lett. 2016, 1, 708–715. [Google Scholar] [CrossRef]
- Rodrigue, H.; Wang, W.; Kim, D.-R.; Ahn, S.-H. Curved shape memory alloy-based soft actuators and application to soft gripper. Compos. Struct. 2017, 176, 398–406. [Google Scholar] [CrossRef]
- Josephine, S.R.; Dhanalakshmi, K. Shape memory alloy wire for self-sensing servo actuation. Mech. Syst. Signal Process. 2017, 83, 36–52. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, M.; Yang, H. Research on soft manipulator actuated by shape memory alloy (SMA) springs. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017; pp. 74–78. [Google Scholar]
- Lim, B.; Kim, K.; Hwang, D. On the design of the 5-DoF finger-wearable cutaneous haptic device. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 872–878. [Google Scholar]
- Van der Elst, L.A.; Quintanar-Guzmán, S.; Hadji-Minaglou, J. Design of an electromechanical prosthetic finger using shape memory alloy wires. In Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 5–7 October 2017; pp. 56–61. [Google Scholar]
- Nawroj, A.I.; Dollar, A.M. Shape Control of Compliant, Articulated Meshes: Towards Modular Active-Cell Robots (MACROs). IEEE Robot. Autom. Lett. 2017, 2, 1878–1884. [Google Scholar] [CrossRef]
- Modabberifar, M.; Spenko, M. A shape memory alloy-actuated gecko-inspired robotic gripper. Sens. Actuators A Phys. 2018, 276, 76–82. [Google Scholar] [CrossRef]
- Hwang, D.; Ihn, Y.S.; Kim, K. Compact Modular Cycloidal Motor With Embedded Shape Memory Alloy Wires. IEEE Trans. Ind. Electron. 2017, 65, 4028–4038. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, T.; Gurung, H.; Mansour, N.A.; Ryu, B.; Shin, B. Bidirectional rotating actuators using shape memory alloy wires. Sens. Actuators A Phys. 2019, 295, 512–522. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, Z.; Wang, J.; Yue, H.; Wu, M.; Liu, Y. A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. Int. J. Mech. Sci. 2019, 159, 74–80. [Google Scholar] [CrossRef]
- Li, J. Position control based on the estimated bending force in a soft robot with tunable stiffness. Mech. Syst. Signal Process. 2019, 134, 106335. [Google Scholar] [CrossRef]
- Sobrinho, J.M.B.; Filho, F.M.F.; Emiliavaca, A.; Cunha, M.F.; Souto, C.R.; Silva, S.A.; Ries, A. Experimental and numerical analyses of a rotary motor using shape memory alloy mini springs. Sens. Actuators A Phys. 2020, 302, 111823. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, Z.; Zhao, X.; Zhao, M.; Xu, Z.; Ye, D. A Novel Data-Driven Control Method for Shape Memory Alloy Actuated Robot Joint *. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6622–6627. [Google Scholar]
- Mansour, N.A.; Baek, H.; Jang, T.; Shin, B.; Kim, Y. ANFIS-Based System Identification and Control of a Compliant Shape Memory Alloy (SMA) Rotating Actuator. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 6–10 July 2020; pp. 783–788. [Google Scholar]
- Ge, J.Z.; Chang, L.; Pérez-Arancibia, N.O. Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress. Mechatronics 2021, 73, 102452. [Google Scholar] [CrossRef]
- Sealy, C. Shape memory actuators drive micro-sized robots. Nano Today 2021, 38, 101167. [Google Scholar] [CrossRef]
- Esposito, L.; Fraldi, M.; Ruocco, E.; Sacco, E. A shape memory alloy helix model accounting for extension and torsion. Eur. J. Mech. A/Solids 2021, 89, 104281. [Google Scholar] [CrossRef]
- Wang, W.; Tang, Y.; Li, C. Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. Int. J. Mech. Sci. 2020, 193, 106181. [Google Scholar] [CrossRef]
- Copaci, D.-S.; Blanco, D.; Martin-Clemente, A.; Moreno, L. Flexible shape memory alloy actuators for soft robotics: Modelling and control. Int. J. Adv. Robot. Syst. 2020, 17. [Google Scholar] [CrossRef]
- Takashima, K.; Rossiter, J.; Mukai, T. McKibben artificial muscle using shape-memory polymer. Sens. Actuators A Phys. 2010, 164, 116–124. [Google Scholar] [CrossRef]
- Jayatilake, D.; Suzuki, K. A multiple SMA hybrid actuator to generate expressions on the face. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 2203–2208. [Google Scholar] [CrossRef]
- Ko, J.; Jun, M.B.G.; Gilardi, G.; Haslam, E.; Park, E.J. Fuzzy PWM-PID control of co-contracting antagonistic shape memory alloy muscle pairs in an artificial finger. Mechatronics 2011, 21, 1190–1202. [Google Scholar] [CrossRef]
- Tai, N.T.; Ahn, K.K. A hysteresis functional link artificial neural network for identification and model predictive control of SMA actuator. J. Process Control 2012, 22, 766–777. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Y. SMA-based bionic integration design of self-sensor–actuator-structure for artificial skeletal muscle. Sens. Actuators A Phys. 2012, 181, 94–102. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, J.; Wu, X.; Liao, W. Single-joint driving system of bionic finger based on shape memory alloy. In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, 4–7 November 2012; pp. 225–228. [Google Scholar]
- Araujo, A.A.M.; Tannuri, E.A.; Forner-Cordero, A. Simulation of model-based impedance control applied to a biomechatronic exoskeleton with shape memory alloy actuators. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1567–1572. [Google Scholar]
- Taniguchi, H. Flexible Artificial Muscle Actuator Using Coiled Shape Memory Alloy Wires. APCBEE Procedia 2013, 7, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Lange, G.; Lachmann, A.; Rahim, A.H.A.; Ismail, M.H.; Low, C.Y. Shape Memory Alloys as Linear Drives in Robot Hand Actuation. Procedia Comput. Sci. 2015, 76, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Villoslada, A.; Flores, A.; Copaci, D.; Blanco, D.; Moreno, L. High-displacement flexible Shape Memory Alloy actuator for soft wearable robots. Robot. Auton. Syst. 2015, 73, 91–101. [Google Scholar] [CrossRef]
- Gao, F.; Deng, H.; Zhang, Y. Hybrid actuator combining shape memory alloy with DC motor for prosthetic fingers. Sens. Actuators A Phys. 2015, 223, 40–48. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mahdavian, M.; Rad, N.F.; Yousefi-Koma, A.; Alidoost, F.; Bazrafshani, M.A. Design and fabrication of a Robotic Hand using shape memory alloy actuators. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 325–329. [Google Scholar]
- Kim, H.; Han, M.; Wang, W.; Song, S.; Rodrigue, H.; Ahn, S. Design and development of bio-mimetic soft robotic hand with shape memory alloy. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 2330–2334. [Google Scholar]
- Dilibal, S.; Engeberg, E.D. Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 152–157. [Google Scholar]
- Pan, C.H.; Wang, Y.B.; Pan, H.Y. Development of dynamically artificial flowers driven by shape memory alloy and pulse width modulation. In Proceedings of the 2015 IEEE International Workshop on Advanced Robotics and Its Social Impacts (ARSO), Lyon, France, 30 June–2 July 2015; pp. 1–6. [Google Scholar]
- Hasegawa, Y.; Suzuki, T. Thin and active fixture to hold finger for easy attachment and comfort of grasping support exoskeleton. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4973–4978. [Google Scholar]
- Ying, S.; Ji, S.; Cai, D.; Bao, G.; Fan, Z. A method to implement biomimetic control for a SMA springs array. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 2419–2424. [Google Scholar]
- Lee, J.; Hwang, D.; Kim, M.; Kim, K. A feasibility test of underactuated robotic prosthetic fingers actuated by shape memory alloy. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 554–560. [Google Scholar]
- Haibin, Y.; Cheng, K.; Junfeng, L.; Guilin, Y. Modeling of grasping force for a soft robotic gripper with variable stiffness. Mech. Mach. Theory 2018, 128, 254–274. [Google Scholar] [CrossRef]
- Kong, X.; Jin, H.; Chen, Y.; Yang, J.; Dong, E. An Enhanced Artificial Muscle Module Based on the Decussate Weaving Shape Memory Alloy Wires for Soft Robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1202–1207. [Google Scholar]
- Lin, M.; Vatani, M.; Choi, J.-W.; Dilibal, S.; Engeberg, E.D. Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system. Sens. Actuators A Phys. 2020, 315, 112221. [Google Scholar] [CrossRef]
- Golgouneh, A.; Holschuh, B.; Dunne, L. A Controllable Biomimetic SMA-actuated Robotic Arm. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–01 December 2020; pp. 152–157. [Google Scholar]
- Jeong, J.; Park, C.H.; Kyung, K.-U. Modeling and Analysis of SMA Actuator Embedded in Stretchable Coolant Vascular Pursuing Artificial Muscles. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May 2020–31 August 2020; pp. 5641–5646. [Google Scholar]
- Wang, Y.; Zheng, S.; Song, Z.; Pang, J.; Li, J. A Coupling Dynamic Model for Studying the Physical Interaction Between a Finger Exoskeleton and a Human Finger. IEEE Access 2020, 8, 125412–125422. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, H.; Dong, E.; Sun, D. A Bioinspired Composite Finger With Self-Locking Joints. IEEE Robot. Autom. Lett. 2021, 6, 1391–1398. [Google Scholar] [CrossRef]
- Simons, M.F.; Digumarti, K.M.; Le, N.H.; Chen, H.-Y.; Carreira, S.C.; Zaghloul, N.S.S.; Diteesawat, R.S.; Garrad, M.; Conn, A.T.; Kent, C.; et al. B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prostheses. IEEE Robot. Autom. Lett. 2021, 6, 3311–3316. [Google Scholar] [CrossRef]
Control Method | Features/Control Parameter | Application | Reference |
---|---|---|---|
Passive control | Heat transfer and constitutive model | FlexiBot | Alireza et al., (2010) [11] |
Passive control | Short-time pulse activation | Four-legged robot | Thanhtam et al., (2010) [12] |
PWM 1 | Force to stroke | Omegabot | J. Koh et al., (2010) [13] |
PWM | Peristaltic motion mechanism | Micro in-pipe | Gao et al., (2011) [14] |
PID 2-fuzzy | Position control | Snake robot | Khodayari et al., (2011) [15] |
Passive control | Continuous deformable structure | Bio-inspired | Rossi et al., (2011) [16] |
Passive contol | Stroke control of a coiled SMA | Millirobots | Kohut et al., (2011) [17] |
Passive contol | Curvature—phase transformation | Robotic pectoral fin | Qin Yan et al., (2012) [18] |
Passive control | Stiffness to force | Flea inspired catapult | Noh et al., (2012) [19] |
Passive control | Motion control | Biomimetic microrobot | Guo et al., (2012) [20] |
Passive control | Agonistic-antagonistic | Octopus muscular hydrostat. | Follador et al., (2012) [21] |
Passive control | Circumferential motion to ring actuators | Pipe crawler | Singh et al., (2013) [22] |
BB and IL 3 | Iterative learning control | Mesh-worm | Seok et al., (2013) [23] |
PP 4 | Path planning control | Starfish-like robot | Mao et al., (2013) [24] |
PID and BB 5 | Positional asymmetric excitation | Flexible microrobot | Abiri et al., (2013) [25] |
Passive control | Periodic current control | Stiquito hexapod | Février et al., (2013) [26] |
Sequential control | Kinematic model for motion control to displacement and force | Starfish robot | Shixin et al., (2013) [27] |
Passive control | Controlling the modulation of current | Micro-aerial vehicle | Colorado et al., (2014) [28] |
PID | Bending curvature control | Caudal fin | Coral et al., (2015) [29] |
Passive control | Strain to steer mobility | Mobile robot | Hadi et al., (2015) [30] |
Closed loop controller | Speed and force | Robotic swimmer | Sfakiotakis et al., (2015) [31] |
Passive control | Force coupled with displacement | Textile robots | Kennedy and Fontecchio (2017) [32] |
PWM | Differential friction | Inchworm robot | Pillai et al., (2017) [33] |
Passive control | Acceleration and angular velocity | Robotic fish | Li and Li (2017) [34] |
Passive control | Passive force to length of wires | Frog like robot | Ren et al., (2017) [35] |
PWM Control | peristaltic motion and the orientation | Soft robot | Alcaide et al., (2017) [36] |
ON/OFF control | Liang dynamic model | Flexible SMA actuators | Ranjith et al., (2018) [37] |
Open-loop position control | Shear stress control | Legged and non-legged | Avadhoot et al., (2018) [38] |
Open-loop testing | Finite element model | Soft gripper | Saeed et al., (2019) [39] |
Passive control | Deformation and torque for roll yaw directions | Legged robots | Ishibashi et al., (2019)[40] |
PID controller and CCA 6 | Bending movement | Soft robots | Yang et al., (2019) [41] |
Passive control | Improved mobility and good terrain adaptability | Rolling robots | Nader et al., (2020) [42] |
Passive control | Bending angles—angular speed | Continuous manipulator | Sonaike et al., (2020) [43] |
Simulation | 3D motion | Bionic Devil Fish | Chen and Liu (2020) [44] |
BPID 7 | Inclination and orientation | Soft robotic neck | Copaci et al., (2020) [45] |
MP and GPA 8 | Applied current to bending | Underwater robots | Cruz et al., (2020) [46] Patterson et al., (2020) [47] |
Passive control | High-speed thermally-induced transformations | SMALLbug | Nguyen et al., (2020) [48] |
Control Method | Features/Control Parameter | Application | Reference |
---|---|---|---|
Passive control | Strain to resistance modeling | Gripping fingers | Chao-Chieh et al., (2010) [49] |
Passive control | Linear into angular movement | Three-fingered gripper | Khodayari et al., (2011) [50] |
Passive Contol | Gripping force changes with the length of the flexure joint | Bio-inspired gripper | Gwang-Pil et al., (2011) [51] |
Passive control | Differential actuation system | Connection | Guoqiang et al., (2012) [52] |
Passive control | Variable pressure difference | Displacement pumps | Keerthi et al., (2013) [53] |
Passive control | Gripping force distribution between the finger and the object | Soft robot gripper | Obaji and Zhang (2013) [54] |
Fuzzy-PID control | Strain to differential resistance | 1-DOF manipulator arm | Josephine et al., (2013) [55] |
PI control | Bidirectional strain/displacement to step movement | Positioning device | Shinya et al., (2013) [56] |
Fuzzy-PID control | Resistance feedback | Ball joint for end effector | Zhenyun et al., (2014) [57] |
PWM control | Enhancement of force and control | SMA based motor | Rossi et al., (2014) [58] |
Fuzzy sliding-mode control | Anti-slip control by force sensing | Robotic gripper | Shaw and Lee (2014) [59] |
PID controller cascaded with a BPID | Position control | Position control | Álvaro et al., (2015) [60] |
Fuzzy-SMC | Strain to position control | Ball balancing beam | Sunjai et al., (2015) [61] |
(underactuated) | |||
Sliding mode control | Strain to differential resistance | 1-DOF bidirectional servo actuation | Josephine et al., (2015) [62] |
PI and saturated PI | Stiffness and compliance | Servomechanism | Zhao et al., (2015) [63] |
PD control | Electrical resistance and force feedback (haptics) | Master-slave systems | Josephine et al., (2016) [64] |
Passive control | Pulling and grasping | Three-fingered gripper | Wei et al., (2016) [65] |
Passive control | Bending and load holding | Robotic hand | Hyung et al., (2016) [66] |
PWM | Close and open | Gripper | Rad et al., (2016) [67] |
Passive control | Actuation and variable stiffness | Robotic skin | Yuen et al., (2016) [68] |
Passive control | Thermoconstitutive model deformation of the actuator | Curved gripper | Hugo et al., (2017) [69] |
Higher-order SMC | Differential electrical resistance | 1-DOF manipulator arm | Josephine et al., (2017) [70] |
PWM | SMA resistance, self-feedback | Soft manipulator | Zhang et al., (2017) [71] |
Passive control | Touch/pressure—shearing force | Haptic device | Lim et al., (2017) [72] |
Passive control | Extension and flexion force | Prosthetic hand | Van der et al., (2017)[73] |
PD control | Shape control based linear actuators -Active Cells | MACRO | Nawroj et al., (2017) [74] |
Passive control | Adhesive pressure control | Gecko inspired gripper | Mehdi et al., (2018) [75] |
Open-loop testing | Continuous and bidirectional rotation | Wearable rehabilitation | Hwang et al., (2018) [76] |
PID control | Angular displacements with compliance | Soft bio-inspired robotic systems | Youngshik et al., (2019) [77] |
Open-loop testing | Theoretical model of grasping force for different capturing targets. | Robotic gripper | Yifan et al., (2019) [78] |
Radial basis function (RBF) + SMC | Two different position controls | Soft robot | Junfeng (2019) [79] |
Open-loop control | Numerical and experimental responses of angular displacement, force, and torque | Servo drive (motor) | José et al., (2020) [80] |
Data driven control | Displacement control | Rehabilitation medical devices | Zhang et al., (2020) [81] |
ANFIS | Closed-chain serial mechanism | Bio-inspired and soft robotics | Mansour et al., (2020) [82] |
Open-loop control | Active cooling system for efficient response | Wearable robotics | Joey et al., (2020) [83] |
Open-loop control | Curvation variation | Foldable robot | Cordelia (2021) [84] |
Backward Euler time integration algorithm and the prediction-correction technique | Euler time integration algorithm and the prediction-correction technique | SMA actuator | Esposito et al., (2021) [85] |
PID control | Gripping force | Soft gripper | Wei et al., (2021) [86] |
Control Method | Features/Control Parameter | Application | Reference |
---|---|---|---|
Passive control | Tension to length relationship | Robotic arm joints | Kazuto et al., (2010) [88] |
PID controller | Displacement/Strain | Robot mask system | Jayatilake et al., (2010) [89] |
Fuzzy PWM-PID | Bi-directional motion | Anthropomorphic artificial finger | Junghyuk et al., (2011) [90] |
Predictive control | HFLANN | Linkages | Nguyen et al., (2012) [91] |
Fuzzy tuned PID controller | Force–velocity and force–length relationships | 1 DOF robotic ankle-foot | Jianjun et al., (2012) [92] |
PI controller | Strain to bending angle | Bionic finger | Sun et al., (2012) [93] |
PID controller | Impedence control | Exoskeletons | Araujo et al., (2012) [94] |
Passive control | Bending angle | Flexible Artificial Muscle Actuator | Hironari (2013) [95] |
adaptive PID | Hysteresis-prone phase transition | Robotic hand | Gerrit et al., (2015) [96] |
Hammerstein-Wiener modeled PID gains | Position and speed control | Wrist exoskeleton | Villoslada et al., (2015) [97] |
Passive control | Improving reflex speed by controlling voltage | Prosthetic finger | Fei Gao et al., (2015) [98] |
Passive control | Strain to bending angle | Prosthetic finger | Ahmadi et al., (2015) [99] |
Passive control | Bending curvature control | Bio-mimetic soft hand. | Kim et al., (2015) [100] |
Passive control | Thermal setting technique | Robotic finger | Dilibal et al., (2015) [101] |
PWM | Deflection control | Artificial flowers | Pan et al., (2015) [102] |
Passive control | Holding/grasping force | Grasping support exoskeleton | Hasegawa and T. Suzuki (2015) [103] |
Programmable logic controller | Displacement and Force | Artificial muscle | Ying et al., (2015) [104] |
Passive control | Underactuated finger motion | Robotic finger | Lee et al., (2016) [105] |
Characterization | Cosserat theory-based grasping force model | Soft robotic gripper | Yin et al., (2018) [106] |
Open-loop tension tests | Strain and weaving angle correlation | Artificial muscle modules | Kong et al., (2018) [107] |
PID control | Precise fingertip force control using feedback from the compliant tactile sensor | Underwater gripper | Maohua et al., (2020) [108] |
PID controller | Joint angular position | Rehabilitation, haptics, and, surgical robotics | Golgouneh et al., (2020) [109] |
Open-loop control | Active cooling system for efficient response | Wearable robotics | Jeong et al., (2020) [110] |
PWM | Coupling dynamic model for modeling and analyze | Exoskeleton | Wang et al., (2020) [111] |
Open-loop control | Self-locking joints | Assisting UAV for perching and grasping bio-inspired finger | Hu et al., (2021) [112] |
Open-loop control | Intuitive grasping | Prosthetic hand | Simons et al., (2021) [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruth, D.J.S.; Sohn, J.-W.; Dhanalakshmi, K.; Choi, S.-B. Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade. Sensors 2022, 22, 4860. https://doi.org/10.3390/s22134860
Ruth DJS, Sohn J-W, Dhanalakshmi K, Choi S-B. Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade. Sensors. 2022; 22(13):4860. https://doi.org/10.3390/s22134860
Chicago/Turabian StyleRuth, Deivamoney Josephine Selvarani, Jung-Woo Sohn, Kaliaperumal Dhanalakshmi, and Seung-Bok Choi. 2022. "Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade" Sensors 22, no. 13: 4860. https://doi.org/10.3390/s22134860
APA StyleRuth, D. J. S., Sohn, J. -W., Dhanalakshmi, K., & Choi, S. -B. (2022). Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade. Sensors, 22(13), 4860. https://doi.org/10.3390/s22134860