An Anti-Turbulence Self-Alignment Method for SINS under Unknown Latitude Conditions
<p>Block diagram of the methodology presented in this paper.</p> "> Figure 2
<p>Flow chart of artificial ant colony simulated annealing algorithm.</p> "> Figure 3
<p>Gravity vector optimization result graph.</p> "> Figure 4
<p>Comparison of latitude estimation methods.</p> "> Figure 5
<p>Fitting results of different orders.</p> "> Figure 6
<p>Attitude angle alignment errors.</p> "> Figure 7
<p>Vehicle experimental setup.</p> "> Figure 8
<p>Alignment attitude angle error.</p> ">
Abstract
:1. Introduction
2. Problem Description
3. Method
3.1. GAM Vector Optimization Method
3.2. Alignment Method for Polynomial Fitting
4. Simulation and Experiment
4.1. Simulation Test
4.1.1. Gravity Vector Optimization
4.1.2. Latitude Estimation
4.1.3. Alignment
4.2. Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Cao, S.Y.; Qi, C.T.; Gao, X.Y. Initial alignment for nonlinear inertial navigation systems with multiple disturbances based on enhanced anti-disturbance filtering. Int. J. Control 2012, 85, 491–501. [Google Scholar] [CrossRef]
- Wu, Y.X.; Pan, X.F. Velocity/Position Integration Formula Part I: Application to In-Flight Coarse Alignment. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1006–1023. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.Y.; Pan, X.; Yang, Y.Q.; Zhang, H. A New Method to Improve the Navigation Performance of SINS in Vibration Environment. IEEE Sens. J. 2021, 21, 438–446. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Tong, J.W.; Li, Y. A Fast SINS Self-Alignment Method Under Geographic Latitude Uncertainty. IEEE Sens. J. 2020, 20, 2885–2894. [Google Scholar] [CrossRef]
- Xu, X.; Gui, J.; Sun, Y.; Yao, Y.; Zhang, T. A Robust In-Motion Alignment Method with Inertial Sensors and Doppler Velocity Log. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Gaiffe, T.; Cottreau, Y.; Faussot, N.; Hardy, G.; Simonpietri, P.; Arditty, H. Highly compact fiber optic gyrocompass for applications at depths up to 3000 meters. In Proceedings of the 2000 International Symposium on Underwater Technology UT 2000, Tokyo, Japan, 23–26 May 2000; pp. 155–160. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhou, Y.L.; Huang, T.C.; Wang, L. Anti-swaying self-alignment method based on observation vector inertia for SINS under latitude uncertainty. Measurement 2021, 177, 109250. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Song, Q.; Yang, Y.; Liu, Y.; Wang, L. A novel self-alignment method for SINS based on three vectors of gravitational apparent motion in inertial frame. Measurement 2015, 62, 47–62. [Google Scholar] [CrossRef]
- Wu, M.P.; Wu, Y.X.; Hu, X.P.; Hu, D.W. Optimization-based alignment for inertial navigation systems. Theory Algorithm Aerosp. Sci. Technol. 2011, 15, 1–17. [Google Scholar] [CrossRef]
- Zhang, R.; Ni, Y.; Wong, D.; Schmidt, J.; Heitner, C.; Jordan, B. Interactions of Optical Brightening Agents with High Yield Pulps. J. Wood Chem. Technol. 2009, 29, 358–370. [Google Scholar] [CrossRef]
- Yan, G.M.; Yan, W.S.; Xu, D.M.; Jiang, S. SINS initial alignment analysis under geographic latitude uncertainty. Aerosp. Control 2008, 26, 31–34. [Google Scholar] [CrossRef]
- Fu, Q.W.; Wu, F.; Li, S.H.; Liu, Y. In-Motion Alignment for a Velocity-Aided SINS with Latitude Uncertainty. IEEE-ASME Trans. Mechatron. 2020, 25, 2893–2903. [Google Scholar] [CrossRef]
- Wang, S.E.; Yang, G.L.; Chen, W.; Wang, L.F. Latitude Determination and Error Analysis for Stationary SINS in Unknow-Position Condition. Sensors 2020, 20, 2588. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Li, W.; Wang, Y.Q. An improved robust initial alignment method under geographic latitude uncertainty and external vibration and shock scenarios. Optik 2021, 242, 167191. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Gao, B.; Li, R.; Cheng, Y.; Fourati, H. Fast Linear Quaternion Attitude Estimator Using Vector Observations. IEEE Trans. Autom. Sci. Eng. 2018, 15, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Li, J.C.; Gao, W.; Zhang, Y. Gravitational Apparent Motion-Based SINS Self-Alignment Method for Underwater Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 11402–11410. [Google Scholar] [CrossRef]
- Li, J.C.; Gao, W.; Zhang, Y.; Wang, Z.C. Gradient Descent Optimization-Based Self-Alignment Method for Stationary SINS. IEEE Trans. Instrum. Meas. 2019, 68, 3278–3286. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.S.; Zhang, T.; Wang, Z.C. In-Motion Filter-QUEST Alignment for Strapdown Inertial Navigation Systems. IEEE Trans. Instrum. Meas. 2018, 67, 1979–1993. [Google Scholar] [CrossRef]
- Hao, S.; Zhou, Z.; Zhang, Z.; Chang, Z.; Liu, X. Analysis of Gravity Disturbance Compensation for Initial Alignment of INS. IEEE Access 2020, 8, 137812–137824. [Google Scholar] [CrossRef]
- Chang, L.B.; Hu, B.Q.; Li, K.L. Iterated Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2053–2060. [Google Scholar] [CrossRef]
- Chang, L.B.; Li, J.S.; Li, K.L. Optimization-Based Alignment for Strapdown Inertial Navigation System: Comparison and Extension. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1697–1713. [Google Scholar] [CrossRef]
- Shan, G.; Park, B.-H.; Nam, S.-H.; Kim, B.; Roh, B.-H.; Ko, Y.-B. A 3-Dimensional Triangulation Scheme to Improve the Accuracy of Indoor Localization for IoT Services. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 24–26 August 2015; pp. 359–363. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stuetzle, T. Ant colony optimization—Artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Dorigo, M.; Di Caro, G.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Bio Syst. 1997, 43, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P., Jr. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
Gyroscope | Accelerometer | ||
---|---|---|---|
Constant value (deg/h) | ) | Constant value (ug) | ) |
0.01 | 0.001 | 100 | 10 |
Parameter | X | Y | Z | |
---|---|---|---|---|
A (°) | 10 | 10 | 10 | |
ω (°/s) | ||||
φ (°) | 0 | 0 | 0 | |
B (mm) | t = 2n (n = 0,1,…) | 1 | 1 | 1 |
t = 2n + 1 (n = 0,1,…) | −1 | −1 | −1 |
Method | Raw Data | Newton’s | ACC | ACSA |
---|---|---|---|---|
RMSE | 0.0449 | 0.0064 | 0.0103 | 0.0014 |
Method | Newton’s | ACC | ACSA |
---|---|---|---|
Running time (s) | 15.86 | 13.03 | 4.77 |
Method | Time Interval/s | Mean/° | RMSE/° |
---|---|---|---|
PFE | [0, 100] | −1.2352 | 10.4168 |
[101, 200] | −0.2294 | 0.5661 | |
[201, 300] | −0.2327 | 0.2857 | |
DV | [0, 100] | 10.0973 | 18.2385 |
[101, 200] | 6.8325 | 7.9523 | |
[201, 300] | 2.4220 | 3.6445 | |
DW-VS | [0, 100] | 9.2512 | 13.9538 |
[101, 200] | 1.4002 | 1.7734 | |
[201, 300] | 0.2868 | 0.6718 |
Fitting Order | Time Interval/s | Error Mean/° |
---|---|---|
1 | [0, 100] | −1.2352 |
[101, 200] | −0.2294 | |
[201, 300] | −0.2327 | |
2 | [0, 100] | −0.1867 |
[101, 200] | 0.0933 | |
[201, 300] | −0.1627 | |
3 | [0, 100] | 3.0752 |
[101, 200] | 0.8635 | |
[201, 300] | 0.1130 | |
4 | [0, 100] | 3.5412 |
[101, 200] | 4.7225 | |
[201, 300] | 1.0349 | |
5 | [0, 100] | −0.9813 |
[101, 200] | 12.0035 | |
[201, 300] | 3.1203 |
Method | Posture Angle | RMSE (°) |
---|---|---|
OBA | Yaw | 1.3572 |
Roll | 0.1394 | |
Pitch | 0.1140 | |
PFE | Yaw | 0.1779 |
Roll | 0.0131 | |
Pitch | 0.0082 |
Gyro Bias | Gyro Random Walk | Accelerometer Bias | Frequency |
---|---|---|---|
1°/h | 10 mg | 50 Hz |
Position Accuracy | Velocity Accuracy | Time Accuracy | Frequency |
---|---|---|---|
1 cm ± 1 ppm | 0.03 m/s | 20 ns | 100 Hz |
Method | Time/s | Posture | RMSE (°) | Max (°) | Min (°) |
---|---|---|---|---|---|
OBA | [0, 300] | Yaw | 0.2247 | −0.2178 | −0.2199 |
Pitch | 0.1726 | 0.1713 | 0.1712 | ||
Roll | 0.1652 | 0.1647 | 0.1645 | ||
[301, 500] | Yaw | 2.3672 | 0.1700 | −4.1690 | |
Pitch | 0.2654 | 0.1901 | 0.1245 | ||
Roll | 0.2637 | 0.1861 | −0.1236 | ||
PFE | [0, 300] | Yaw | 0.2066 | −0.2065 | −0.2067 |
Pitch | 0.1015 | 0.1052 | 0.1015 | ||
Roll | 0.1003 | 0.1007 | 0.1006 | ||
[301, 500] | Yaw | 0.4400 | −0.2002 | −0.6930 | |
Pitch | 0.0986 | 0.0997 | 0.0952 | ||
Roll | 0.0994 | 0.0984 | 0.0948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Li, J.; Ma, X.; Feng, K.; Guo, X.; Wei, X.; Feng, Y.; Zhang, C.; Wang, J. An Anti-Turbulence Self-Alignment Method for SINS under Unknown Latitude Conditions. Sensors 2022, 22, 4686. https://doi.org/10.3390/s22134686
Jiao Y, Li J, Ma X, Feng K, Guo X, Wei X, Feng Y, Zhang C, Wang J. An Anti-Turbulence Self-Alignment Method for SINS under Unknown Latitude Conditions. Sensors. 2022; 22(13):4686. https://doi.org/10.3390/s22134686
Chicago/Turabian StyleJiao, Yubing, Jie Li, Xihong Ma, Kaiqiang Feng, Xiaoting Guo, Xiaokai Wei, Yujun Feng, Chenming Zhang, and Jingqi Wang. 2022. "An Anti-Turbulence Self-Alignment Method for SINS under Unknown Latitude Conditions" Sensors 22, no. 13: 4686. https://doi.org/10.3390/s22134686
APA StyleJiao, Y., Li, J., Ma, X., Feng, K., Guo, X., Wei, X., Feng, Y., Zhang, C., & Wang, J. (2022). An Anti-Turbulence Self-Alignment Method for SINS under Unknown Latitude Conditions. Sensors, 22(13), 4686. https://doi.org/10.3390/s22134686