Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery
<p>Locations of the study area and test plots.</p> "> Figure 2
<p>Reflectance of (<b>a</b>) original hyperspectral data and (<b>b</b>) S–G filter denoised hyperspectral data.</p> "> Figure 3
<p>Correlation of original reflectance and S–G filter denoised reflectance for (<b>a</b>) SSC and (<b>b</b>) SOM.</p> "> Figure 4
<p>Correlations between hyperspectral reflectance and (<b>a</b>) SSC and (<b>b</b>) SOM under different mathematical transformations.</p> "> Figure 5
<p>Scatter diagram of the (<b>a</b>) SSC1 and (<b>b</b>) SOM1 model.</p> "> Figure 6
<p>Distribution of (<b>a</b>) SSC and (<b>c</b>) SOM based on the hyperspectral estimation model and that of (<b>b</b>) SSC and (<b>d</b>) SOM based on the fitted multispectral estimation model in the three test plots.</p> "> Figure 7
<p>Comparison (<b>a</b>) and scatter plot (<b>b</b>) of surface reflectance of the fitted multispectral bands of the UAV images and bands of the Landsat-8 image.</p> "> Figure 8
<p>Spatial distribution of retrieved (<b>a</b>) SSC and (<b>b</b>) SOM values in the study area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Soil Data
2.2.2. UAV Hyperspectral Data
2.2.3. Landsat-8 Satellite Data
2.3. Construction and Verification of Estimation Models Based on UAV Images
2.3.1. Construction of Hyperspectral Estimation Model
2.3.2. Construction of Fitted Multispectral Estimation Model
2.4. Landsat-8 Image Reflectance Correction
2.5. SSC and SOM Estimation
3. Results and Analysis
3.1. SSC and SOM Characteristics
3.2. Construction and Verification of the Hyperspectral Estimation Models
3.3. Construction and Verification of the Fitted Multispectral Estimation Model
3.4. SSC and SOM Estimation in the Test Plot
3.5. Landsat-8 Image Reflectance Correction
3.6. SSC and SOM Estimation in the Study Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Chen, S.; Ji, H.; Fan, Y.; Li, P. The modern Yellow River Delta in transition: Causes and implications. Mar. Geol. 2021, 436, 106476. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the spad ofwinter wheat in the reviving stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, N.; Wang, H.; Yang, Z. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 2014, 90, 70–78. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Li, X.; Xu, M.; Li, Y.; Zheng, H.; Luo, Y.; Smith, P. Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower Yellow River Delta. Pedosphere 2021, 31, 839–848. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [CrossRef]
- Sun, J.; He, F.; Zhang, Z.; Shao, H.; Pan, Y.; Yang, R.; Li, W.; Li, P.; Zheng, M. Analysis of saline groundwater infiltration into two loam soils. Land Degrad. Dev. 2018, 29, 3795–3802. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Wu, J.; Ye, M.; Yang, J. Modelling the salt accumulation and leaching processes in arid agricultural areas with a new mass balance model. J. Hydrol. 2020, 591, 125329. [Google Scholar] [CrossRef]
- Lu, X.; Li, R.; Shi, H.; Liang, J.; Miao, Q.; Fan, L. Successive simulations of soil water-heat-salt transport in one whole year of agriculture after different mulching treatments and autumn irrigation. Geoderma 2019, 344, 99–107. [Google Scholar] [CrossRef]
- Rozema, J.; Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 2013, 92, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Xia, X.; Bi, H.; Huang, H.; Ding, R.; Zhao, L. Land subsidence of the Yellow River Delta in China driven by river sediment compaction. Sci. Total Environ. 2021, 750, 142165. [Google Scholar] [CrossRef]
- Naizheng, X.; Taolin, Z.; Xingxiang, W. Soil organic carbon storage changes in Yangtze Delta region, China. Environ. Earth Sci. 2010, 63, 1021–1028. [Google Scholar] [CrossRef]
- Hao, L.; Su, X.; Singh, V.P.; Zhang, L.; Zhang, G. Suitable oasis and cultivated land scales in arid regions based on ecological health. Ecol. Indic. 2019, 102, 33–42. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Xu, R.; Huang, H.; Wu, F. GIS and RS based Assessment of Cultivated Land Quality of Shandong Province. Procedia Environ. Sci. 2012, 12, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Li, Y.; Wang, X.; Liu, Z.; Ma, K.; Ding, L. Research on estimation models of the spectral characteristics of soil organic matter based on the soil particle size. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119963. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth 2013, 55–57, 43–52. [Google Scholar] [CrossRef]
- Zhai, M. Inversion of organic matter content in wetland soil based on Landsat 8 remote sensing image. J. Vis. Commun. Image Represent. 2019, 64, 102645. [Google Scholar] [CrossRef]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Emilien, A.-V.; Thomas, C.; Thomas, H. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Yu, Q.; Yao, T.; Lu, H.; Feng, W.; Xue, Y.; Liu, B. Improving estimation of soil organic matter content by combining Landsat 8 OLI images and environmental data: A case study in the river valley of the southern Qinghai-Tibet Plateau. Comput. Electron. Agric. 2021, 185, 106144. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Zhao, G.; Wang, Z.; Wang, D. Spectral Index Fusion for Salinized Soil Salinity Inversion Using Sentinel-2A and UAV Images in a Coastal Area. IEEE Access 2020, 8, 159595–159608. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping regional soil organic matter based on sentinel-2a and modis imagery using machine learning algorithms and google earth engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Zhu, A.; Wang, Z.; Zhao, G.; Wei, Y. International Journal of Applied Earth Observations and Geoinformation Soil salinity inversion based on differentiated fusion of satellite image and ground spectra. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102360. [Google Scholar]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Ji, H.; Ke, Y.; Fu, Y. Combining Landsat-8 and Sentinel-2 to investigate seasonal changes of suspended particulate matter off the abandoned distributary mouths of Yellow River Delta. Mar. Geol. 2021, 441, 106622. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Lu, J.; Zhou, Z.; Feng, Q.; Wu, Y. Full lifecycle monitoring on drought-converted catastrophic flood using sentinel-1 sar: A case study of poyang lake region during summer 2020. Remote Sens. 2021, 13, 3485. [Google Scholar] [CrossRef]
- Zhu, W.; Rezaei, E.E.; Nouri, H.; Yang, T.; Li, B.; Gong, H.; Lyu, Y.; Peng, J.; Sun, Z. Quick detection of field-scale soil comprehensive attributes via the integration of UAV and sentinel-2B remote sensing data. Remote Sens. 2021, 13, 4716. [Google Scholar] [CrossRef]
- Qi, G.; Zhao, G.; Xi, X. Soil salinity inversion of winter wheat areas based on satellite-unmanned aerial vehicle-ground collaborative system in coastal of the yellow river delta. Sensors 2020, 20, 6521. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil. Remote Sens. 2019, 11, 1700. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chen, H.; Wang, Z.; Ma, Y. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Qi, G.; Chang, C.; Yang, W.; Gao, P.; Zhao, G. Soil salinity inversion in coastal corn planting areas by the satellite-uav-ground integration approach. Remote Sens. 2021, 13, 3100. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Bai, J.; Lu, Q.; Zhang, G. Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: Implications on wetland restoration. Phys. Chem. Earth 2017, 97, 12–18. [Google Scholar] [CrossRef]
- Dong, J.; Wang, W.; Zhao, D.; Zhang, C.; Fang, J.; Wang, L.; Zhang, Q.; Liu, J. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 2022, 806, 150629. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhuang, T.; Bai, J.; Wang, J.; Yu, Z.; Wang, X.; Zhang, G. Effects of water and salinity on soil labile organic carbon in estuarine wetlands of the Yellow River Delta, China. Ecohydrol. Hydrobiol. 2020, 20, 556–569. [Google Scholar] [CrossRef]
- Meng, L.; Qu, F.; Bi, X.; Xia, J.; Li, Y.; Wang, X.; Yu, J. Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary. Sci. Total Environ. 2021, 751, 141737. [Google Scholar] [CrossRef]
- Fu, Y.; Wan, L.; Xiao, D.; Le, B.T. Remote sensing inversion of saline and alkaline land based on reflectance spectroscopy and D-TELM algorithm in Wuyuan areas. Infrared Phys. Technol. 2020, 109, 103367. [Google Scholar] [CrossRef]
- Habibi, L.N.; Watanabe, T.; Matsui, T.; Tanaka, T.S.T. Machine learning techniques to predict soybean plant density using UAV and satellite-based remote sensing. Remote Sens. 2021, 13, 2548. [Google Scholar] [CrossRef]
- Bao, Y.; Meng, X.; Ustin, S.; Wang, X.; Zhang, X.; Liu, H.; Tang, H. Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies. Catena. 2020, 195, 104703. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Xu, B.; Feng, H.; Yang, G. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Yang, T.; Li, J.; Peng, J.; Zhu, K.; Li, S.; Gong, H.; Lyu, Y.; Li, B.; et al. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales. Comput. Electron. Agric. 2020, 178, 105786. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Niu, B. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy. PLoS ONE. 2018, 13, e0196198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Xu, X.; Wang, J.; Yang, H.; Huang, W.; Feng, H. A method of estimating soil moisture based on the linear decomposition of mixture pixels. Math. Comput. Model. 2013, 58, 606–613. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at Qehan Lake, Inner Mongolia, China. Catena 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.L.; Peng, J.; Ji, W.J.; Liu, H.J.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Bartholomeus, H.; Herold, M. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and Quantitative mapping of salinity stress in sugarcane fields. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 412–421. [Google Scholar] [CrossRef]
- Xia, K.; Xia, S.; Shen, Q.; Yang, B.; Song, Q.; Xu, Y.; Zhang, S.; Zhou, X. Moisture spectral characteristics and hyperspectral inversion of fly ash-filled reconstructed soil q. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119590. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, J.; Zhu, Q.; Cheng, Y.; Ma, Q.; Ji, X. The impact of green open space on community attachment-a case study of three communities in Beijing. Sustainability 2017, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Chauhan, R.; Kumar, R. Spectral characteristics of organic soil matter: A comprehensive review. Microchem. J. 2021, 171, 106836. [Google Scholar] [CrossRef]
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q.; et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Wang, S.; Li, H.; Huang, F.; Li, B. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma 2014, 226–227, 54–63. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, W.; Li, H.; Wu, H.; Yan, B. Soil organic matter and salinity as critical factors affecting the bacterial community and function of Phragmites australis dominated riparian and coastal wetlands. Sci. Total Environ. 2021, 762, 143156. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Borthwick, A.G.L.; Duan, Q.; Liu, H.; Sun, Q.; Ye, A.; Di, Z.; Gong, W. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J. Hydrol. 2015, 520, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, Z.; Feng, Z. From natural driving to artificial intervention: Changes of the Yellow River estuary and delta development. Ocean Coast. Manag. 2019, 174, 63–70. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.T.; Latif, A.; Johnson, V.C. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef]
- Jia, P.; Shang, T.; Zhang, J.; Sun, Y. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sensing data. Geoderma Reg. 2021, 25, e00399. [Google Scholar] [CrossRef]
Transformation Form | Symbol |
---|---|
Untransformed reflectance | r |
First-order differential | r′ |
Reciprocal | 1/r |
First-order differential of reciprocal | (1/r)′ |
Logarithmic | lg r |
First-order differential of logarithm | lg(r)′ |
Square | r2 |
Satellite Bands | Landsat-8 Data | Fitted Multispectral Bands | UAV Data | ||
---|---|---|---|---|---|
Wavelength Coverage (nm) | Central Wavelength (nm) | Wavelength Coverage (nm) | Central Wavelength (nm) | ||
Blue (B) | 450–515 | 482.5 | BB | 449.4–515.0 | 482 |
Green (G) | 525–600 | 562.5 | BG | 524.9–598.5 | 561.5 |
Red (R) | 630–680 | 655 | BR | 632.3–680.2 | 656 |
Near-infrared (NIR) | 845–885 | 865 | BNIR | 844.8–884.2 | 866.2 |
Transformation Form | Symbol * |
---|---|
Addition | Bi + Bj |
Subtraction | Bi − Bj |
Division | Bi/Bj |
Logarithmic | lg(Bi) |
Reciprocal | 1/Bi |
Ratio of addition and division | (Bi + Bj)/(Bi − Bj) |
Ratio of division and addition | (Bi − Bj)/(Bi + Bj) |
Sample Type | Sample Size | Minimum (g/kg) | Maximum (g/kg) | Mean (g/kg) | Standard Deviation (g/kg) | Coefficient of Variation | |
---|---|---|---|---|---|---|---|
SSC | Total | 106 | 0.384 | 16.193 | 5.636 | 3.415 | 0.605 |
Calibration set | 76 | 0.384 | 16.193 | 5.614 | 3.407 | 0.607 | |
Validation set | 30 | 0.406 | 15.855 | 5.692 | 3.435 | 0.603 | |
SOM | Total | 105 | 4.001 | 38.660 | 17.081 | 8.461 | 0.495 |
Calibration set | 75 | 4.001 | 38.660 | 17.038 | 8.479 | 0.498 | |
Validation set | 30 | 4.692 | 38.531 | 17.191 | 8.413 | 0.489 |
Model | SSC Dataset | SOM Dataset | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Calibration Set | Validation Set | Calibration Set | Validation Set | |||||||
R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | RPD | R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | RPD | |
F(r) | 0.671 | 2.035 | 0.616 | 2.268 | 1.503 | 0.732 | 4.798 | 0.711 | 4.854 | 1.791 |
F(r)′ | 0.767 | 1.679 | 0.744 | 1.821 | 1.924 | 0.747 | 4.443 | 0.733 | 5.175 | 1.934 |
F(1/r)′ | 0.726 | 1.906 | 0.739 | 1.777 | 1.537 | 0.763 | 4.138 | 0.757 | 4.553 | 2.001 |
F((lg r)′) | 0.779 | 1.676 | 0.761 | 1.799 | 2.004 | 0.693 | 5.134 | 0.696 | 4.984 | 1.711 |
F(r2) | 0.692 | 2.059 | 0.715 | 1.973 | 1.713 | 0.744 | 4.702 | 0.736 | 4.740 | 1.935 |
|R| | SSC Fitted Multispectral Estimation Models | |R| | SOM Fitted Multispectral Estimation Models | ||
---|---|---|---|---|---|
Group S1 (|R| > 0.40) | Group S2 (|R| > 0.55) | Group M1 (|R| > 0.40) | Group M2 (|R| > 0.55) | ||
0.45 | BB | 0.50 | BB | ||
0.49 | BG | 0.46 | BG | ||
0.45 | BR | 0.48 | BR | ||
0.51 | BNIR | 0.51 | BNIR | ||
0.45 | BB + BNIR | 0.48 | lg(BNIR) | ||
0.62 | BR + BNIR | BR + BNIR | 0.48 | BB + BG | |
0.45 | BB − BR | 0.49 | BB + BR | ||
0.42 | BG − BNIR | 0.56 | BB + BNIR | ||
0.58 | BG/BR | BG/BR | 0.47 | BG + BR | |
0.46 | (BB + BG)/(BB − BG) | 0.50 | BG + BNIR | ||
0.48 | (BB + BR)/(BB − BG) | 0.44 | BR + BNIR | ||
0.64 | (BB + BNIR)/(BB − BG) | (BB + BNIR)/(BB − BG) | 0.48 | BB − BNIR | |
0.60 | (BG + BR)/(BB − BG) | (BG + BR)/(BB − BG) | 0.53 | BG − BR | |
0.44 | (BG + Bnir)/(BB − BG) | 0.51 | BG − BNIR | ||
0.60 | (BR + BNIR)/(BB − BG) | (BR + BNIR)/(BB − BG) | 0.46 | BG/BR | |
0.44 | (BR + BNIR)/(BG − BR) | 0.42 | (BB + BG)/(BB − BG) | ||
0.52 | (BG − BR)/(BB + BG) | 0.56 | (BB + BR)/(BB − BG) | (BB + BR)/(BB − BG) | |
0.45 | (BG − BR)/(BB + BR) | 0.61 | (BB + BNIR)/(BB − BG) | (BB + BNIR)/(BB − BG) | |
0.62 | (BB − BG)/(BB + BNIR) | (BB − BG)/(BB + BNIR) | 0.56 | (BG + BR)/(BB − BG) | (BG + BR)/(BB − BG) |
0.56 | (BG − BR)/(BB + BNIR) | (BG − BR)/(BB + BNIR) | 0.61 | (BG + BNIR)/(BB − BG) | (BG + BNIR)/(BB − BG) |
0.51 | (BG − BR)/(BG + BR) | 0.46 | (BB − BG)/(BG + BR) | ||
0.48 | (BG − BR)/(BG + BNIR) | 0.47 | (BG − BR)/(BG + BR) | ||
0.56 | (BB − BG)/(BR + BNIR) | (BB − BG)/(BR + BNIR) | 0.57 | (BB − BG)/(BR + BNIR) | (BB − BG)/(BR + BNIR) |
0.45 | (BG − BR)/(BR + BNIR) | ||||
0.41 | (BG − BNIR)/(BR + BNIR) |
Model | Parameters | Formula | Calibration Set | Validation Set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | RPD | |||
SSC1 | Group S1 (|R| > 0.40) | Y = 44.637 − 81.464 × BNIR − 11.690 × (BB + BNIR)/(BB − BG) − 5.56 × (BG + BR)/(BB − BG) + 54.909 × (BB − BG)/(BB + BNIR) + 34.665 × (BB − BG)/(BR + BNIR) | 0.691 | 1.938 | 0.676 | 2.202 | 1.743 |
SSC2 | Group S2 (|R| > 0.55) | Y = 57.412 − 16.666 × (BG/BR) − 10.153 × (BB + BNIR)/(BB − BG) − 1.285 × (BG + BR)/(BB − BG) + 13.275 × (BR + BNIR)/(BB − BG) + 63.189 × (BB − BG)/(BB + BNIR) | 0.659 | 2.180 | 0.655 | 2.240 | 1.676 |
SOM1 | Group M1 (|R| > 0.40) | Y = − 109.761 + 61.143 × (BG + BNIR) + 17.294 × (BB + BR)/(BB − BG) − 13.642 × (BB + BNIR)/(BB − BG) − 904.36 × (BB − BG)/(BB + BNIR) + 887.385 × (BB − BG)/(BR +BNIR) | 0.684 | 5.105 | 0.663 | 5.263 | 1.691 |
SOM2 | Group M2 (|R| > 0.55) | Y = − 65.888 + 4.266 × (BB + BR)/(BB − BG) − 27.725 × (BB + BNIR)/(BB − BG) + 11.55 × (BG + BNIR)/(BB − BG) − 1236.432 × (BG + BR)/(BB − BG) + 1398.119 × (BB − BG)/(BR + BNIR) | 0.649 | 5.340 | 0.656 | 5.325 | 1.655 |
Plot | SSC Grade (g/kg) | Area (%) | SOM Grade (g/kg) | Area (%) | ||
---|---|---|---|---|---|---|
Hyperspectral Estimation Model | Fitted Multispectral Estimation Model | Hyperspectral Estimation Model | Fitted Multispectral Estimation Model | |||
A | 0–2 | 1.76 | 3.07 | 0–6 | 0.05 | 0.17 |
2–4 | 7.13 | 4.31 | 6–10 | 0.20 | 0.37 | |
4–6 | 54.25 | 50.29 | 10–20 | 70.58 | 78.74 | |
6–10 | 36.86 | 42.33 | 20–30 | 22.34 | 13.31 | |
>10 | 0 | 0 | 30–40 | 6.83 | 7.41 | |
≥40 | 0 | 0 | ||||
B | 0–2 | 0.12 | 0.09 | 0–6 | 0.02 | 0.41 |
2–4 | 45.31 | 45.27 | 6–10 | 0.03 | 0.43 | |
4–6 | 48.13 | 44.62 | 10–20 | 14.93 | 15.15 | |
6–10 | 6.26 | 9.93 | 20–30 | 76.61 | 76.53 | |
≥10 | 0.18 | 0.09 | 30–40 | 3.29 | 3.93 | |
≥40 | 5.12 | 3.55 | ||||
C | 0–2 | 0.27 | 0.23 | 0–6 | 7.04 | 8.91 |
2–4 | 4.58 | 3.71 | 6–10 | 51.14 | 45.36 | |
4–6 | 16.91 | 24.01 | 10–20 | 24.15 | 27.98 | |
6–10 | 59.43 | 57.22 | 20–30 | 16.44 | 15.98 | |
≥10 | 18.81 | 14.83 | 30–40 | 0.64 | 1.73 | |
≥40 | 0.59 | 0.04 |
Band | Blue | Green | Red | NIR |
---|---|---|---|---|
Reflectance correction coefficient | 1.09 | 1.25 | 1.19 | 1.27 |
SSC Grade (g/kg) | Area (km2) | Percentage (%) | SOM Grade (g/kg) | Area (km2) | Percentage (%) |
---|---|---|---|---|---|
0–2 | 17.06 | 0.80 | 0–6 | 91.43 | 4.06 |
2–4 | 354.25 | 16.45 | 6–10 | 296.32 | 13.14 |
4–6 | 1043.08 | 48.44 | 10–20 | 971.90 | 43.11 |
6–10 | 600.93 | 27.91 | 20–30 | 553.01 | 24.53 |
>10 | 137.85 | 6.40 | 30–40 | 329.95 | 14.63 |
>40 | 11.99 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Li, Q.; Jiang, X.; Ye, T.; Li, X.; Niu, B. Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery. Sensors 2022, 22, 3990. https://doi.org/10.3390/s22113990
Sun M, Li Q, Jiang X, Ye T, Li X, Niu B. Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery. Sensors. 2022; 22(11):3990. https://doi.org/10.3390/s22113990
Chicago/Turabian StyleSun, Mingyue, Qian Li, Xuzi Jiang, Tiantian Ye, Xinju Li, and Beibei Niu. 2022. "Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery" Sensors 22, no. 11: 3990. https://doi.org/10.3390/s22113990
APA StyleSun, M., Li, Q., Jiang, X., Ye, T., Li, X., & Niu, B. (2022). Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery. Sensors, 22(11), 3990. https://doi.org/10.3390/s22113990