Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite
<p>Fluorescence signal at the top-of-canopy (TOC) simulated by SCOPE.</p> "> Figure 2
<p>Simulated signals with 0.3 nm spectral resolution and 0.1 nm sampling interval derived from the SCOPE and MODTRAN 5 models, including the top–of–atmosphere (TOA) radiance over the vegetated surface (Rad_Veg), solar irradiance (Solar_Irr), upward transmittance of the atmosphere (T_u), SIF signal at the top of the canopy (TOC_SIF) and atmosphere (TOA_SIF).</p> "> Figure 3
<p>The root mean square error (RMSE) of SIF retrieval when different values for each parameter were set. The influence of each parameter was investigated when other parameters were set as their default values, i.e., μ<sub>h1</sub> = 740 nm, σ<sub>h1</sub> = 30 nm, μ<sub>h2</sub> = 688 nm, σ<sub>h2</sub> = 10 nm, n<sub>p</sub> = 3, n<sub>SV</sub> = 11, λ<sub>1</sub> = 730 nm, and λ<sub>2</sub> = 691 nm (SNR = 322). The horizontal bar in blue represents the median, diamonds in red represent the average, and the box bar covers 50% of the RMSE values. RMSE values that do not fall within the upper and lower limits of the boxplot are excluded as outliers.</p> "> Figure 4
<p>The root mean square error (RMSE) of (<b>a</b>) far-red and (<b>b</b>) red SIF retrieval using different fitting windows (λ<sub>1</sub>—758 nm at far-red band and 682—λ<sub>2</sub> nm at red band) and simulation datasets with different SNRs. Other parameters listed in <a href="#sensors-21-03482-t004" class="html-table">Table 4</a> are arbitrarily changed, and the minimal value of the RMSE is taken.</p> "> Figure 5
<p>The RMSE of SIF retrieval in different (<b>a</b>) far-red and (<b>b</b>) red fitting windows (λ<sub>1</sub>—758 nm at far-red band and 682—λ<sub>2</sub> nm at red band) when the other parameters in <a href="#sensors-21-03482-t004" class="html-table">Table 4</a> arbitrarily change (SNR = 322). The horizontal bar in blue represents the median, diamonds in red represent the average, the box bar covers 50% of the RMSE values, RMSE values that do not fall within the upper and lower limits of the boxplot are excluded as outliers.</p> "> Figure 6
<p>The RMSE of SIF retrieval in the optimal (<b>a</b>) far-red (735–758 nm) and (<b>b</b>) red fitting windows (682–697 nm) with different polynomial orders when the other parameters in <a href="#sensors-21-03482-t004" class="html-table">Table 4</a> arbitrarily change. The horizontal bar in blue represents the median, diamonds in red represent the average. The case where n<sub>p</sub> is 5 in the far-red fitting window is excluded for the abnormal RMSE value with an average of 17.14 mW m<sup>−2</sup> sr<sup>−1</sup> nm<sup>−1</sup>.</p> "> Figure 7
<p>The RMSE of SIF retrieval in (<b>a</b>) far-red and (<b>b</b>) red fitting windows using different numbers of feature vectors. The order of the polynomial is 2 and the fitting windows are 735–758 nm and 682–697 nm for the far-red and red band, respectively.</p> "> Figure 8
<p>The optimal polynomial order (<b>a</b>,<b>c</b>) and number of feature vectors (<b>b</b>,<b>d</b>) of SIF retrieval in different far-red (<b>a</b>,<b>b</b>) and red (<b>c</b>,<b>d</b>) fitting windows (λ<sub>1</sub>—758 nm at far-red band and 682—λ<sub>2</sub> nm at red band). The influence of the SNR is also shown by the number of scattered points in the same fitting window. The optimal parameters were selected with the smallest RMSE.</p> "> Figure 9
<p>The end-to-end SIF retrieval for the TECIS-1 satellite using (<b>a</b>) far-red and (<b>b</b>) red fitting windows with optimized parameter setting (SNR = 322). For far-red SIF, the fitting window is 735–758 nm, the order of the polynomial is 2, and the number of feature vectors is 4. For red SIF, the fitting window is 682–697 nm, the order of the polynomial is 2, and the number of feature vectors is 7. The standard deviations of retrieved SIF are depicted by the error bars.</p> "> Figure 10
<p>Fitting (<b>a</b>,<b>c</b>) radiance spectra and (<b>b</b>,<b>d</b>) residual error using (<b>a</b>,<b>b</b>) far-red fitting window (735–758 nm) and (<b>c</b>,<b>d</b>) red fitting window (682–697 nm) when SIF is fitted and not fitted.</p> "> Figure 10 Cont.
<p>Fitting (<b>a</b>,<b>c</b>) radiance spectra and (<b>b</b>,<b>d</b>) residual error using (<b>a</b>,<b>b</b>) far-red fitting window (735–758 nm) and (<b>c</b>,<b>d</b>) red fitting window (682–697 nm) when SIF is fitted and not fitted.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Datasets
2.2. The Data-Driven SIF Retrieval Algorithm
3. Results
3.1. Influence of Empirical Parameters on SIF Retrievals
3.1.1. Influences of Fitting Window and SNR on SIF Retrievals
3.1.2. Influence of Polynomial Order and the Number of Feature Vectors on SIF Retrievals
3.2. End-to-end SIF Retrievals of the Optimal Empirical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sara Tokhi, A.; Ryozo, N.; Shusuke, M.; Tofael, A. Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Chung-Te, C.; Pei, J.; Hsiang-Hua, W.; Teng-Chiu, L. Resilience of a subtropical rainforest to annual typhoon disturbance: Lessons from 25-year data of leaf area index. For. Ecol. Manag. 2020, 470-471, 118210. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111–177. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Gu, L.; Marchesini, L.B.; Vasilkov, A.P.; Schaefer, K. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma, M.; Porcar-Castell, A.; Griffis, T.J. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, eaam5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, S.; Voigt, M.; Thum, T.; Gonsamo, A.; Zhang, Y.; Köhler, P.; Jung, M.; Varlagin, A.; Guanter, L. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob. Chang. Biol. 2016, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xiao, X.; Zhang, Y.; Wolf, S.; Zhou, S.; Joiner, J.; Guanter, L.; Verma, M.; Sun, Y.; Yang, X. On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sens. Environ. New York 2018, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guanter, L.; Joiner, J.; Lian, S.; Guan, K. Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data. Remote Sens. Environ. 2018, 210, 362–374. [Google Scholar] [CrossRef]
- Köhler, P.; Guanter, L.; Kobayashi, H.; Walther, S.; Wei, Y. Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests. Remote Sens. Environ. 2017, 204, 769–785. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef] [Green Version]
- Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Aben, I.; Tol, P.; Krijger, J.M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 2015, 8, 1337–1352. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Yu, S. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 2020, 251, 112032. [Google Scholar] [CrossRef]
- Du, S.; Liu, L.; Liu, X.; Zhang, X.; Zhang, X.; Bi, Y.; Zhang, L. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 2018, 63, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Liu, L.; Liu, X.; Zhang, X.; Gao, X.; Wang, W. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects. Sensors 2020, 20, 815. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Rossini, M.; Colombo, R.; Meroni, M.; Frankenberg, C.; Lee, J.-E.; Joiner, J. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sens. Environ. 2013, 133, 52–61. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Guanter, L.; Middleton, E.M. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. 2016, 9, 3939–3967. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Huang, C.; Zhang, L. Designment and Assessment of Far-Red Solar-Induced Chlorophyll Fluorescence Retrieval Method for the Terrestrial Ecosystem Carbon Inventory Satellite. Remote Sens. Technol. Appl. 2019, 3, 476–487. [Google Scholar]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Meroni, M.; Preusker, R.; Fischer, J.; Moreno, J. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands. J. Geophys. Res. 2010. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2014, 6, 10656–10675. [Google Scholar] [CrossRef] [Green Version]
- Tol, V.D.C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.; Swayze, G. Automated Spectral Analysis: Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm. Lunar Planet. Sci. Conf. 1995, 26, 255. [Google Scholar]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Berk, A.; Acharya, P.K.; Bernstein, L.S.; Anderson, G.P.; Chetwynd, J.H.; Hoke, M.L. Reformulation of the MODTRAN band model for higher spectral resolution. In Proceedings of the AeroSense 2000, Orlando, FL, USA, 24–26 April 2000; Volume 4049, pp. 190–198. [Google Scholar] [CrossRef]
- Ji, M.; Tang, B.; Li, Z. Review of Solar-induced Chlorophyll Fluorescence Retrieval Methodsfrom Satellite Data. Remote Sensing Technol. Appl. 2019, 3, 455–466. [Google Scholar]
- Parazoo, N.C.; Frankenberg, C.; Köhler, P.; Joiner, J.; Yoshida, Y.; Magney, T.; Sun, Y.; Yadav, V. Towards a Harmonized Long-term Spaceborne Record of Far-red Solar-induced Fluorescence. J. Geophys. Res. Biogeosci. 2019, 124. [Google Scholar] [CrossRef]
- Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 2011, 115, 1882–1892. [Google Scholar] [CrossRef]
- Wolanin, A.; Rozanov, V.V.; Dinter, T.; No?L, S.; Vountas, M.; Burrows, J.P.; Bracher, A. Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results. Remote Sens. Environ. 2015, 166, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Kohler, P.; Guanter, L.; Frankenberg, C. Simplified Physically Based Retrieval of Sun-Induced Chlorophyll Fluorescence From GOSAT Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1446–1450. [Google Scholar] [CrossRef]
- Drusch, M.; Moreno, J.; Del Bello, U. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273–1284. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.M. Tropospheric emissions: Monitoring of pollution (TEMPO)—ScienceDirect. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef] [Green Version]
Parameter | Spectral Resolution (nm) | Sampling Interval (nm) | Spectral Range (nm) | Signal-to-Noise Ratio |
---|---|---|---|---|
Value | 0.3 | 0.1 | 670–780 | 322 * |
Parameters of MODTRAN5 | Value |
Atmospheric temperature profile | middle latitude summer/winter |
Total column water vapor (g cm−2) | 0.5, 1.5, 2.5, 4 |
View zenith angle (degree) | 0, 16 |
Final altitude (km) | 0.01, 0.05, 1, 2 |
Aerosol optical thickness at 550 nm (km) | 0.05, 0.12, 0.2, 0.3, 0.4 |
Solar zenith angle (degree) | 15, 30, 45, 70 |
Parameters of SCOPE | Value |
Leaf area index (LAI) | 0.5, 1, 2, 3, 4, 5, 7 |
Fluorescence quantum efficiency (fqe) | 0.01, 0.02, 0.04 |
Chlorophyll content (Cab) (μg cm−2) | 20, 30, 40, 50, 60, 80 |
Exp. | w1 | w2 | np | nSV | RMSE * | bias * | r | slope | Intercept * |
---|---|---|---|---|---|---|---|---|---|
1 | 755 | 778 | 2 | 7 | 1.18 | −0.34 | 0.77 | 0.87 | −0.03 |
2 | 747 | 780 | 4 | 7 | 0.86 | 0.01 | 0.87 | 0.99 | 0.03 |
3 | 724 | 747 | 2 | 10 | 0.80 | 0.33 | 0.91 | 1.01 | 0.29 |
4 | 715 | 748 | 3 | 9 | 0.69 | 0.14 | 0.93 | 0.95 | 0.25 |
5 | 720 | 758 | 3 | 11 | 0.61 | 0.24 | 0.96 | 0.98 | 0.29 |
6 | 735 | 758 | 2 | 4 | 0.63 | −0.03 | 0.93 | 1.00 | −0.01 |
7 | 735 | 758 | 4 | 4 | 0.78 | 0.25 | 0.91 | 1.04 | 0.16 |
8 | 735 | 758 | 2 | 15 | 0.84 | −0.01 | 0.88 | 1.03 | −0.07 |
9 | 735 | 758 | 2 | 20 | 0.92 | −0.01 | 0.87 | 1.03 | −0.09 |
10 | 682 | 697 | 2 | 5 | 0.60 | 0.19 | 0.57 | 1.24 | 0.06 |
11 | 682 | 697 | 2 | 7 | 0.53 | 0.11 | 0.60 | 1.08 | −0.14 |
12 | 682 | 697 | 2 | 10 | 0.62 | 0.26 | 0.53 | 1.10 | 0.20 |
13 | 682 | 697 | 5 | 4 | 0.53 | 0.01 | 0.57 | 1.13 | −0.03 |
14 | 682 | 697 | 1 | 15 | 0.56 | −0.18 | 0.51 | 0.98 | −0.17 |
Parameter | Description | Range | Step |
---|---|---|---|
λ1 (nm) | Starting wavelength of far-red fitting window | [715,745] | 5 |
λ2 (nm) | Ending wavelength of red fitting window | [685,697] | 2 |
np | Polynomial order | [1,5] | 1 |
nSV | Number of feature vectors | [2,20] | 1 |
μh1 (nm) | The central wavelength of hf at the far-red band | [735,745] | 1 |
σh1 (nm) | The standard deviation of hf at the far-red band | [20,40] | 1 |
μh2 (nm) | The central wavelength of hf at the red band | [683,693] | 1 |
σh2 (nm) | The standard deviation of hf at the red band | [9,11] | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Du, S.; Liu, X.; Liu, L.; Wang, Y.; Li, Z. Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite. Sensors 2021, 21, 3482. https://doi.org/10.3390/s21103482
Zou C, Du S, Liu X, Liu L, Wang Y, Li Z. Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite. Sensors. 2021; 21(10):3482. https://doi.org/10.3390/s21103482
Chicago/Turabian StyleZou, Chu, Shanshan Du, Xinjie Liu, Liangyun Liu, Yuyang Wang, and Zhen Li. 2021. "Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite" Sensors 21, no. 10: 3482. https://doi.org/10.3390/s21103482
APA StyleZou, C., Du, S., Liu, X., Liu, L., Wang, Y., & Li, Z. (2021). Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite. Sensors, 21(10), 3482. https://doi.org/10.3390/s21103482