A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone
<p>Sparse representation of array signals.</p> "> Figure 2
<p>CS-DOA experiment under the same regularization parameter and different SNR. (<b>a</b>) SNR = 30 dB; (<b>b</b>) SNR = 10 dB; (<b>c</b>) SNR = −5 dB; (<b>d</b>) SNR = −10 dB.</p> "> Figure 3
<p>CS-DOA experiment with the same SNR and different regularization parameters. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mrow> <mo>=</mo> <mn>5</mn> </mrow> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mrow> <mo>=</mo> <mn>15</mn> </mrow> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mrow> <mo>=</mo> <mn>30</mn> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>The trend of the power spectrum entropy of the signal under different noise environments.</p> "> Figure 5
<p>Root mean square error of CS-DOA estimation under different SNR and regularization parameters.</p> "> Figure 6
<p>DBSCAN pseudo code flow chart.</p> "> Figure 7
<p>Flow chart of CS-DOA-DBSCAN algorithm.</p> "> Figure 8
<p>DOA estimation experiments for different algorithms (snapshots = 10, SNR = −10 dB). (<b>a</b>) CS-DOA-DBSCAN for single source signal, (<b>b</b>) CS-DOA-DBSCAN for multi-source signal, (<b>c</b>) MUSIC for single source signal, (<b>d</b>) MUSIC for multi-source signal, (<b>e</b>) TLS-ESPRIT for single source signal, (<b>f</b>) TLS-ESPRIT for multi-source signal.</p> "> Figure 8 Cont.
<p>DOA estimation experiments for different algorithms (snapshots = 10, SNR = −10 dB). (<b>a</b>) CS-DOA-DBSCAN for single source signal, (<b>b</b>) CS-DOA-DBSCAN for multi-source signal, (<b>c</b>) MUSIC for single source signal, (<b>d</b>) MUSIC for multi-source signal, (<b>e</b>) TLS-ESPRIT for single source signal, (<b>f</b>) TLS-ESPRIT for multi-source signal.</p> "> Figure 9
<p>DOA estimation of MUSIC and TLS-ESPRIT (snapshots = 1000, SNR = −10 dB). (<b>a</b>) MUSIC, (<b>b</b>) TLS-ESPRIT.</p> "> Figure 10
<p>The DOA estimation experiment of the CS-DOA-DBSCAN algorithm in a multi-source environment, (<b>a</b>) the number of array elements is 6; (<b>b</b>) the number of array elements is 8.</p> "> Figure 11
<p>DOA estimation experiment of close angles.</p> "> Figure 12
<p>DOA estimation experiment under different number of snapshots, (<b>a</b>) snapshots = 10; (<b>b</b>) snapshots = 30.</p> "> Figure 13
<p>Non-uniform linear array DOA estimation experiment, (<b>a</b>) array model; (<b>b</b>) DOA experiment.</p> "> Figure 14
<p>DOA estimation experiment for coherent signal. (<b>a</b>) CS-DOA-DBSCAN, (<b>b</b>) MUSIC.</p> "> Figure 15
<p>The RMSE of the DOA estimation of each algorithm under different SNRs.</p> "> Figure 16
<p>(<b>a</b>) MEMS vector hydrophone and (<b>b</b>) Cross-beam structure.</p> "> Figure 17
<p>Reservoir environment.</p> "> Figure 18
<p>(<b>a</b>) MEMS vector hydrophone array and (<b>b</b>) schematic of the experiment.</p> "> Figure 18 Cont.
<p>(<b>a</b>) MEMS vector hydrophone array and (<b>b</b>) schematic of the experiment.</p> "> Figure 19
<p>(<b>a</b>) The part of original signal and (<b>b</b>) DOA estimation.</p> "> Figure 20
<p>Schematic diagram of the mixing experiment of single sound source and explosion sound.</p> "> Figure 21
<p>The part of original signal. (<b>a</b>) The signal near the shock wave, (<b>b</b>) Partial enlargement of the highest peak shock wave signal.</p> "> Figure 22
<p>DOA estimation results. (<b>a</b>) DOA estimation of the stationary signal before the shock wave. (<b>b</b>) DOA estimation of the signal near the shock wave.</p> ">
Abstract
:1. Introduction
2. Theoretical Basis and Analysis
2.1. Principles and Characteristics of DOA Estimation Based on CS Theory
2.1.1. DOA Estimation Principle Based on CS Theory
2.1.2. Features of CS-DOA
2.2. Selection of Regularization Parameters
2.3. Density-Based Spatial Clustering
3. The Method Proposed in This Paper (CS-DOA-DBSCAN)
4. Simulation
4.1. DOA Experimental Performance Analysis of a Small Number of Signal Sources
4.2. DOA Experimental Performance Analysis of Multiple Signal Sources
4.3. Performance Analysis of DOA Experiment at Close Angles
4.4. Performance Analysis of DOA Experiments under Different Snapshots
4.5. Performance Analysis of DOA Experiment of Non-Uniform Linear Array
4.6. DOA Estimation of Coherent Signals
4.7. Comparison of Estimation Error of Different Algorithms under Different SNR
5. MEMS Vector Hydrophone Signal Processing
5.1. Experimental Equipment and Experimental Environments
5.2. Lake Experiments
5.2.1. Direction Finding Experiments for Single Source Underwater Acoustic Signal
5.2.2. DOA of Mixing Single Sound Source and Explosion Shock Wave
6. Conclusions
- (1)
- Regarding the selection of regularization parameters in the CS model, most of the literature selects the parameters based on experience, and there is no general judgment criterion. In this paper, the simulation results show that the adaptability of DOA estimation algorithm based on CS principle to noise is related to the selection of regularization parameters, and then the power spectrum entropy is proposed to represent the complexity of signal noise, which indirectly provides a reference for the selection of regularization parameters.
- (2)
- Traditional DOA estimation algorithms usually need to predict the number of signal sources. In a low SNR environment, the performance of DOA estimation based on the CS principle will deteriorate, which is likely to cause misjudgment of the number of signal sources and DOA. The algorithm proposed in this paper can obtain the number of sources while obtaining effective DOA estimation, even under the condition of a small amount of abnormal snapshots.
- (3)
- In the case of non-uniform linear array or signal coherence, the algorithm proposed in this paper can also obtain good DOA estimation results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Z.; Wang, H.; Zheng, X.; Yin, L. Base Station Selection for Hybrid TDOA/RTT/DOA Positioning in Mixed LOS/NLOS Environment. Sensors 2020, 20, 4132. [Google Scholar] [CrossRef]
- Fabregat, G.; Belloch, J.A.; Badía, J.M.; Cobos, M. Design and Implementation of Acoustic Source Localization on a Low-Cost IoT Edge Platform. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3547–3551. [Google Scholar] [CrossRef]
- Wen, J.; Wei, G.; Xiong, X. Electrical Impedance Tomography Based on a High-resolution Direction-of-arrival Estimation Algorithm. Sens. Mater. 2020, 32, 3297. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, C.-H.; Zhang, S.; Yisimayili, A.; Yu, H.; Yu, C.; Liu, J.-Y. Locating Seismo-Conductivity Anomaly before the 2017 MW 6.5 Jiuzhaigou Earthquake in China Using Far Magnetic Stations. Remote Sens. 2020, 12, 1777. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Piperakis, G.; Kalogerakis, M.; Orfanakis, E.; Papadakis, P.; Dosso, S.E.; Frantzis, A. Underwater Acoustic Pulsed Source Localization with a Pair of Hydrophones. Remote Sens. 2018, 10, 883. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Kong, Y.; He, X.; Zhang, M.; Tan, X. An Improved Squirrel Search Algorithm for Maximum Likelihood DOA Estimation and Application for MEMS Vector Hydrophone Array. IEEE Access 2019, 7, 118343–118358. [Google Scholar] [CrossRef]
- Jablon, N. Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections. IRE Trans. Antennas Propag. 1986, 34, 996–1012. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Kundu, D. Modified MUSIC algorithm for estimating DOA of signals. Signal Process. 1996, 48, 85–90. [Google Scholar] [CrossRef]
- Hu, Y.; Abhayapala, T.D.; Samarasinghe, P.N. Multiple Source Direction of Arrival Estimations Using Relative Sound Pressure Based MUSIC. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 253–264. [Google Scholar] [CrossRef]
- Shuyu, Z.; Xiaokuan, Z.; Weichen, Z.; Jianxiong, Z.; Binfeng, Z.; Jiahua, X. Parameter estimation of GTD model and RCS extrapolation based on a modified 3D-ESPRIT algorithm. J. Syst. Eng. Electron. 2020, 31, 1206–1215. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation. Electron. Lett. 2011, 47, 283–284. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Daudet, L.; Davies, M.E. Dictionary Subselection Using an Overcomplete Joint Sparsity Model. IEEE Trans. Signal Process. 2014, 62, 4547–4556. [Google Scholar] [CrossRef] [Green Version]
- Yong, Z.; Li-Yi, Z.; Jian-Feng, H.; Zhe, B.; Yi, Y. A new DOA estimation algorithm based on compressed sensing. Clust. Comput. 2018, 22, 895–903. [Google Scholar] [CrossRef]
- Wei, X.; Yuan, Y.; Ling, Q. DOA Estimation Using a Greedy Block Coordinate Descent Algorithm. IEEE Trans. Signal Process. 2012, 60, 6382–6394. [Google Scholar] [CrossRef]
- Dehghani, M.; Aghababaiyan, K. FOMP algorithm for Direction of Arrival estimation. Phys. Commun. 2018, 26, 170–174. [Google Scholar] [CrossRef]
- Emadi, M.; Miandji, E.; Unger, J. OMP-based DOA estimation performance analysis. Digit. Signal Process. 2018, 79, 57–65. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic Decomposition by Basis Pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Atashbar, M.; Kahaei, M.H. Coherentl1-SVD method for DOA estimation of wideband signals. IEEJ Trans. Electr. Electron. Eng. 2013, 9, 97–99. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Chen, Z.; Nie, Z. Grid Evolution Method for DOA Estimation. IEEE Trans. Signal Process. 2018, 66, 2374–2383. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.-P.; Yan, J.; Zhang, Z. Two sparse-based methods for off-grid direction-of-arrival estimation. Signal Process. 2018, 142, 87–95. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective. IEEE Sens. J. 2016, 17, 755–765. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Zhang, Y.D.; Shi, Z.; Jin, T.; Wu, X. Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 2017, 11, 1719–1724. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.-P.; Yan, J. A Toeplitz Covariance Matrix Reconstruction Approach for Direction-of-Arrival Estimation. IEEE Trans. Veh. Technol. 2017, 66, 8223–8237. [Google Scholar] [CrossRef]
- Wu, X. Localization of far-field and near-field signals with mixed sparse approach: A generalized symmetric arrays perspective. Signal Process. 2020, 175, 107665. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Tao, W.; Li-Sheng, Y.; Jian-Mei, L.; Shi-Zhong, Y. A modified MUSIC to estimate DOA of the coherent narrowband sources based on UCA. In Proceedings of the 2006 International Conference on Communication Technology; Institute of Electrical and Electronics Engineers (IEEE), Istanbul, Turkey, 11–15 June 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, W.; Han, Y.; Jin, M.; Li, X.-S. An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation. IEEE Commun. Lett. 2019, 24, 339–343. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef] [Green Version]
- Jagannath, R. Detection, estimation and grid matching of multiple targets with single snapshot measurements. Digit. Signal Process. 2019, 92, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Fortunati, S.; Grasso, R.; Gini, F.; Greco, M.S.; Lepage, K. Single-snapshot DOA estimation by using Compressed Sensing. EURASIP J. Adv. Signal Process. 2014, 2014, 120. [Google Scholar] [CrossRef] [Green Version]
- Michael, G.; Stephen, B. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta. Available online: http://cvxr.com/cvx (accessed on 28 January 2021).
- Yan, H.; Xu, T.; Wang, P.; Zhang, L.; Hu, H.; Bai, Y. MEMS Hydrophone Signal Denoising and Baseline Drift Removal Algorithm Based on Parameter-Optimized Variational Mode Decomposition and Correlation Coefficient. Sensors 2019, 19, 4622. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Wang, X.; Liu, Z.; Yan, Z.; Jiao, L.; Wang, D.; Wang, J. EEMD-based online milling chatter detection by fractal dimension and power spectral entropy. Int. J. Adv. Manuf. Technol. 2017, 92, 1185–1200. [Google Scholar] [CrossRef]
- Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast Density-Based Clustering with R. J. Stat. Softw. 2019, 91, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, Y.; Lei, B.; Lu, J.; Yang, L. Nonuniform linear array DOA estimation using EM criterion. Digit. Signal Process. 2019, 86, 36–41. [Google Scholar] [CrossRef]
- Zhang, G.J.; Li, Z.; Wu, S.J.; Xue, C.Y.; Yang, S.E.; Zhang, W.D. A Bionic Fish Cilia Median-Low Frequency Three-Dimensional Piezoresistive MEMS Vector Hydrophone. Nano-Micro Lett. 2014, 6, 136–142. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Chen, T.; Wang, P.; Zhang, L.; Cheng, R.; Bai, Y. A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone. Sensors 2021, 21, 2191. https://doi.org/10.3390/s21062191
Yan H, Chen T, Wang P, Zhang L, Cheng R, Bai Y. A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone. Sensors. 2021; 21(6):2191. https://doi.org/10.3390/s21062191
Chicago/Turabian StyleYan, Huichao, Ting Chen, Peng Wang, Linmei Zhang, Rong Cheng, and Yanping Bai. 2021. "A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone" Sensors 21, no. 6: 2191. https://doi.org/10.3390/s21062191
APA StyleYan, H., Chen, T., Wang, P., Zhang, L., Cheng, R., & Bai, Y. (2021). A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone. Sensors, 21(6), 2191. https://doi.org/10.3390/s21062191