MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure
<p>Schematic of the MEMS-based electrochemical seismometer relying on a cathode–anode–cathode (CAC) integrated three-electrode structure (e.g., 7—front cathode, 8—back cathode, and 9—sidewall anode). Variations in environmental vibrations lead to movements of 2—rubber membrane and 3—electrolyte, resulting in ion distribution imbalances on the CAC electrodes and thus producing current outputs.</p> "> Figure 2
<p>Schematic and preliminary results of the numerical simulations of the mechanical module (<b>a</b>) and (<b>b</b>) made of key components of the rubber membrane in orange, the electrolyte in gray, and the CAC integrated three-electrode structure positioned within the middle of the flow channel and the electrochemical module (<b>c</b>,<b>d</b>) made of electrodes and flow holes with the key geometrical parameters of the length of the anode (<math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>a</mi> </msub> </mrow> </semantics></math>), the side length of the square flow hole (<math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>f</mi> </msub> </mrow> </semantics></math>), and the number of flow holes (<math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>f</mi> </msub> </mrow> </semantics></math>).</p> "> Figure 3
<p>Simulation results of the mechanical module, the electrochemical module, and a combination of the two as a function of the length of the anode (<b>a</b>–<b>c</b>), the side length of the square flow hole (<b>d</b>–<b>f</b>), and the number of flow holes (<b>g</b>–<b>i</b>).</p> "> Figure 4
<p>(<b>a</b>) The normal structure of the anode–cathode–cathode–anode (ACCA). (<b>b</b>) The ACCA structure lacking some of the cathodes. (<b>c</b>) The results of the comparison simulation.</p> "> Figure 5
<p>(<b>a</b>–<b>j</b>) Fabrication process of the CAC integrated three-electrode structure. (<b>k</b>) Four prototypes of the CAC integrated three-electrode structures. (<b>l</b>) Assembled seismometer.</p> "> Figure 6
<p>(<b>a</b>) Amplitude–frequency responses of the MEMS-based electrochemical seismometer relying on a CAC integrated three-electrode structure (CAC), the commercially available electrochemical seismometer based on woven metallic meshes (CME6011), and the most updated report of the MEMS-based electrochemical seismometer relying on the integrated four-electrode structure (ACCA) [<a href="#B22-sensors-21-00809" class="html-bibr">22</a>]. (<b>b</b>) Linearity comparison between the CAC and the CME6011.</p> "> Figure 7
<p>Noise level of the MEMS-based electrochemical seismometer relying on a CAC integrated three-electrode structure (CAC) and the commercially available electrochemical seismometer based on woven metallic meshes (CME6011). NHNM, new high-noise model of the earth; NLNM, new low-noise model of the earth.</p> "> Figure 8
<p>The preliminary (<b>a</b>) and normalized (<b>b</b>) responses of random vibrations of the MEMS-based electrochemical seismometer relying on a CAC integrated three-electrode structure (CAC) and the commercially available electrochemical seismometer based on woven metallic meshes (CME6011).</p> ">
Abstract
:1. Introduction
2. Structure and Simulation
2.1. Device Structure
2.2. Numerical Simulation
3. Fabrication
4. Device Characterizations
4.1. Amplitude–Frequency Response
4.2. Noise Level
4.3. Response of Random Vibrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zeng, R.; Lin, J.; Zhao, Y.J. Development situation of geophones and its application in seismic array observation. Prog. Geophys. 2014, 29, 2106–2112. [Google Scholar]
- Chen, T.; Zheng, T.Y. Review of earthquake damage losses in mainland china in 2015. J. Catastrophol. 2016, 31, 133–137. [Google Scholar]
- Wang, B.Z.; Wang, D.; Chen, W. Trends and development level of petroleum seismic exploration technology. Sino-Glob. Energy 2011, 16, 46–55. [Google Scholar]
- Ruan, A.G.; Li, J.B.; Feng, Z.Y.; Wu, Z.Y. Ocean bottom seismometer and its development in the world. J. Mar. Sci. 2004, 22, 19–27. [Google Scholar]
- Pike, W.T.; Calcutt, S.; Standley, I.M. A Silicon Seismic Package (SSP) for Planetary Geophysics. In Proceedings of the Lunar and Planetary Science Conference, Woodland, TX, USA, 21–25 March 2016. [Google Scholar]
- Zhang, G.H.; Hu, S.Y. Dynamic characteristics of moving-coil geophone with large damping. Int. J. Appl. Electromagn. Mech. 2010, 33, 565–571. [Google Scholar] [CrossRef]
- Wang, X.Z.; Teng, Y.T. New technology of seismic sensors and its development. Prog. Geophys. 2010, 25, 478–485. [Google Scholar]
- Jaroszewicz, L.R.; Krajewski, K.; Kowalski, H. AFOS autonomous fiber-optic rotation seismograph: Design and application. Acta Geophys. 2011, 59, 578–596. [Google Scholar] [CrossRef]
- Levinzon, F.A. Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier. IEEE Sens. J. 2012, 12, 2262–2268. [Google Scholar] [CrossRef]
- Bakhoum, E.G.; Cheng, M.H. Frequency-selective seismic sensor. IEEE Trans. Instrum. Meas. 2012, 61, 823–829. [Google Scholar] [CrossRef]
- Chen, H.S.; Fu, N.Z. Development of capacitance displacement sensor. Seismol. Geomagn. Obs. Res. 1988, 9, 116–124. [Google Scholar]
- Wang, Q.; Ren, X.F.; Jiao, S.M. A diamagnetic levitation based inertial sensor for geophysical application. Sens. Actuators A Phys. 2020, 312, 112122. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Wang, Y. Micromachined Accelerometers with Sub-g/√Hz Noise Floor: A Review. Sensors 2020, 20, 4054. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Agafonov, V.; Yu, H. Molecular electric transducers as motion sensors: A review. Sensors 2013, 13, 4581–4597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levchenko, D.G.; Kuzin, I.P.; Safonov, M.V.; Sychikov, V.N.; Ulomov, I.V.; Kholopov, B.V. Experience in seismic signal recording using broadband electrochemical seismic sensors. Seism. Instrum. 2010, 46, 250–264. [Google Scholar] [CrossRef]
- Krishtop, V.G.; Agafonov, V.M.; Bugaev, A.S. Technological principles of motion parameter transducers based on mass and charge transport in electrochemical microsystems. Russ. J. Electrochem. 2012, 48, 746–755. [Google Scholar] [CrossRef]
- He, W.T.; Chen, D.Y.; Li, G.B.; Wang, J.B. Low frequency electrochemical accelerometer with low noise based on MEMS. Key Eng. Mater. 2012, 503, 75–80. [Google Scholar] [CrossRef]
- Deng, T.; Chen, D.Y.; Wang, J.B.; Chen, J.; Sun, Z.Y.; Li, G.L. Microelectromechanical systems based electrochemical seismic sensors with insulating spacers integrated electrodes for planetary exploration. IEEE Sens. J. 2016, 16, 650–653. [Google Scholar] [CrossRef]
- Deng, T.; Sun, Z.Y.; Li, G.L.; Chen, J.; Chen, D.Y.; Wang, J.B. Microelectromechanical system-based electrochemical seismic sensors with an anode and a cathode integrated on one chip. J. Micromech. Microeng. 2016, 27, 025004. [Google Scholar] [CrossRef]
- Huang, H.; Carande, B.; Tang, R.; Oiler, J.; Zaitsev, D.; Agafonov, V.; Yu, H.Y. A micro seismometer based on molecular electronic transducer technology for planetary exploration. Appl. Phys. Lett. 2013, 102, 4524–4546. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Y.; Chen, D.Y.; Chen, J.; Deng, T.; Li, G.L.; Wang, J.B. A MEMS based electrochemical seismometer with a novel integrated sensing unit. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems, Shanghai, China, 24–28 January 2016. [Google Scholar]
- Zheng, X.C.; Chen, D.Y.; Wang, J.B.; Chen, J.; Xu, C.; Qi, W.J.; Liu, B.W. Microelectromechanical system-based electrochemical seismometers with two pairs of electrodes integrated on one chip. Sensors 2019, 19, 3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Performance | CAC | CME6011 | ACCA |
---|---|---|---|
Maximum sensitivity | 4246.20 V/(m/s) @0.4 Hz | 371.15 V/(m/s) @1.4 Hz | 3555.57 V/(m/s) @1 Hz |
3 dB working bandwidth | 0.16–2.01 Hz (1.06 decades) | 0.33–8.09 Hz (1.37 decades) | 0.48–3.98 Hz (0.86 decades) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, X.; Wang, J.; Chen, D.; Chen, J.; Xu, C.; Qi, W.; Liu, B.; Liang, T. MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure. Sensors 2021, 21, 809. https://doi.org/10.3390/s21030809
She X, Wang J, Chen D, Chen J, Xu C, Qi W, Liu B, Liang T. MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure. Sensors. 2021; 21(3):809. https://doi.org/10.3390/s21030809
Chicago/Turabian StyleShe, Xu, Junbo Wang, Deyong Chen, Jian Chen, Chao Xu, Wenjie Qi, Bowen Liu, and Tian Liang. 2021. "MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure" Sensors 21, no. 3: 809. https://doi.org/10.3390/s21030809
APA StyleShe, X., Wang, J., Chen, D., Chen, J., Xu, C., Qi, W., Liu, B., & Liang, T. (2021). MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure. Sensors, 21(3), 809. https://doi.org/10.3390/s21030809