Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators
<p>Electric field norm distributions of the traveling transverse-electric (TE) counter-clockwise (CCW) mode inside a bare microtoroid simulated using (<b>a</b>) 2D axisymmetric method and (<b>b</b>) 3D eigenfrequency. Electric field norm distributions of the (<b>c</b>) symmetric (SM) mode and (<b>d</b>) antisymmetric (ASM) mode were simulated using a 3D eigenfrequency model. The perturbative polystyrene nanosphere has a radius of 50 nm and is positioned with a 10 nm radial gap between it and the microtoroid equator. (<b>e</b>) Theoretically simulated mode splitting transmission spectrum. The SM mode experiences a frequency redshift of <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </semantics></math> and a linewidth broadening <math display="inline"><semantics> <mo>Γ</mo> </semantics></math>, which is quantified by a full width at half maximum linewidth in Hz. The color bar for all electric field norm distributions is given in (<b>b</b>).</p> "> Figure 2
<p>Three-dimensional eigenfrequency simulation results of (<b>a</b>) the splitting frequency |<math display="inline"><semantics> <mrow> <mn>2</mn> <mi>g</mi> </mrow> </semantics></math>| and (<b>b</b>) linewidth broadening <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> versus radius <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math> in terms of two different background media: air with <math display="inline"><semantics> <mrow> <msqrt> <mrow> <msub> <mi>ε</mi> <mrow> <mi>b</mi> <mi>g</mi> </mrow> </msub> </mrow> </msqrt> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and water with <math display="inline"><semantics> <mrow> <msqrt> <mrow> <msub> <mi>ε</mi> <mrow> <mi>b</mi> <mi>g</mi> </mrow> </msub> </mrow> </msqrt> <mo>=</mo> <mn>1.33</mn> </mrow> </semantics></math>. (<b>c</b>) Nanosphere polarizability versus radius <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. Solid lines denote the analytical calculation using Equation (1) and stars denote numerical results derived from <math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>/</mo> <mn>2</mn> <mi>g</mi> <mo>=</mo> <mo>−</mo> <mi>α</mi> <msub> <mi>ω</mi> <mi>c</mi> </msub> <msup> <mrow/> <mn>3</mn> </msup> <msup> <mrow> <msqrt> <mrow> <msub> <mi>ε</mi> <mrow> <mi>b</mi> <mi>g</mi> </mrow> </msub> </mrow> </msqrt> </mrow> <mn>3</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mi>π</mi> <msup> <mi>c</mi> <mn>3</mn> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>d</b>,<b>e</b>) Particle radius <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>FEM</mi> </mrow> </msub> </mrow> </semantics></math> derived from Equation (4). Solid lines indicate the true radius <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. (<b>f</b>) Percent error of the sizing results calculated by <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>−</mo> <msub> <mi>a</mi> <mrow> <mi>FEM</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>(<b>a</b>) Q-factors of the SM mode versus the radius <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. (<b>b</b>) Diagram of the five microtoroid-particle binding cases where the particle lands with five different polar angles moving away from the energy maximum of the whispering-gallery mode (WGM). The electric field units are arbitrary.</p> ">
Abstract
:1. Introduction
2. Modeling Approach
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, J. Label-free biological and chemical sensing using whispering gallery mode optical resonators: Past, present, and future. Sensors 2017, 17, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J. Label-Free Single Exosome Detection Using Frequency-Locked Microtoroid Optical Resonators. ACS Photonics 2015, 2, 1241–1245. [Google Scholar] [CrossRef]
- Su, J.; Goldberg, A.F.; Stoltz, B.M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 2016, 5, e16001. [Google Scholar] [CrossRef] [Green Version]
- Ozgur, E.; Roberts, K.; Ozgur, E.; Gin, A.; Bankhead, J.; Wang, Z.; Su, J. Ultrasensitive Detection of Human Chorionic Gonadotropin Using Frequency Locked Microtoroid Optical Resonators. Anal. Chem. 2019, 91. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 2010, 4, 46. [Google Scholar] [CrossRef]
- Kim, W.; Özdemir, Ş.K.; Zhu, J.; Yang, L. Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Appl. Phys. Lett. 2011, 98, 141106. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Xiao, Y.-F.; Liu, Y.-C.; Li, B.-B.; Chen, Y.-L.; Li, Y.; Gong, Q. Multiple-Rayleigh-scatterer-induced mode splitting in a high- Q whispering-gallery-mode microresonator. Phys. Rev. A 2011, 83, 023803. [Google Scholar] [CrossRef]
- Zhu, J.; Özdemir, Ş.K.; He, L.; Chen, D.-R.; Yang, L. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt. Express 2011, 19, 16195–16206. [Google Scholar] [CrossRef]
- Kim, W.; Ozdemir, S.K.; Zhu, J.; Faraz, M.; Coban, C.; Yang, L. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator. Opt. Express 2012, 20, 29426. [Google Scholar] [CrossRef] [Green Version]
- Deych, L.; Shuvayev, V. Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators. Phys. Rev. A 2015, 92, 013842. [Google Scholar] [CrossRef] [Green Version]
- Campanella, C.M.; Dunai, M.; Calabrese, L.; Campanella, C.E. Design guidelines for nanoparticle chemical sensors based on mode-splitting silicon-on-insulator planar microcavities. J. Opt. Soc. Am. B 2016, 33, 2383. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, Y.; Liu, H. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities. Photonics Res. 2017, 5, 396. [Google Scholar] [CrossRef]
- Shuvayev, V.; Deych, L. Ab initio computational analysis of spectral properties of dielectric spheroidal resonators interacting with a subwavelength nanoparticle. Phys. Rev. E 2019, 99, 013310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Özdemir, Ş.K.; Zhu, J.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Shao, L.; Arnold, S.; Liu, Y.-C.; Ma, C.-Y.; Xiao, Y.-F. Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Phys. Rev. A 2014, 90, 043847. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, A.; Götzinger, S.; de S. Menezes, L.; Zumofen, G.; Benson, O.; Sandoghdar, V. Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light. Phys. Rev. Lett. 2007, 99, 173603. [Google Scholar] [CrossRef] [Green Version]
- Foreman, M.R.; Keng, D.; Lopez, J.R.; Arnold, S. Whispering gallery mode single nanoparticle detection and sizing: The validity of the dipole approximation. Opt. Lett. 2017, 42, 963–966. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Li, C.; Chen, L.; McLeod, E.; Su, J. Dark mode plasmonic optical microcavity biochemical sensor. Photonics Res. 2019, 7, 939–947. [Google Scholar] [CrossRef]
- Kaplan, A.; Tomes, M.; Carmon, T.; Kozlov, M.; Cohen, O.; Bartal, G.; Schwefel, H.G. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid. Opt. Express 2013, 21, 14169–14180. [Google Scholar] [CrossRef]
- Han, J. Effects of Nanocylinders on the Whispering Gallery Modes in a Microcylinder. Sensors 2016, 16, 512. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, C.; Liu, Y.-M.; Su, J.; McLeod, E. Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators. Photonics Res. 2019, 7, 967. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, S.-J.; Yu, X.-C.; Chen, Y.-L.; Yang, D.; Gong, Q.; Xiao, Y.-F. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A 2018, 97, 063828. [Google Scholar] [CrossRef]
- Liu, W.; McLeod, E. Accuracy of the Skin Depth Correction for Metallic Nanoparticle Polarizability. J. Phys. Chem. C 2019, 123, 13009–13014. [Google Scholar] [CrossRef]
- Mizuyama, Y. How to Use the Beam Envelopes Method for Wave Optics Simulations. Available online: https://www.comsol.com/blogs/how-to-use-the-beam-envelopes-method-for-wave-optics-simulations/ (accessed on 19 August 2020).
Angle above Equator | ||
---|---|---|
0° | 50.78 | 46.01 |
2.75° | 51.06 | 46.09 |
5.5° | 53.91 | 46.29 |
8.25° | 50.43 | 45.13 |
11° | 52.17 | 44.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, C.; Liu, Y.; Su, J.; McLeod, E. Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators. Sensors 2020, 20, 5420. https://doi.org/10.3390/s20185420
Chen L, Li C, Liu Y, Su J, McLeod E. Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators. Sensors. 2020; 20(18):5420. https://doi.org/10.3390/s20185420
Chicago/Turabian StyleChen, Lei, Cheng Li, Yumin Liu, Judith Su, and Euan McLeod. 2020. "Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators" Sensors 20, no. 18: 5420. https://doi.org/10.3390/s20185420
APA StyleChen, L., Li, C., Liu, Y., Su, J., & McLeod, E. (2020). Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators. Sensors, 20(18), 5420. https://doi.org/10.3390/s20185420