Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method
<p>(<b>a</b>) Schematic of EHD printing equipment. (<b>b</b>) Printing and preparation of Car-P(AA-co-AM) hydrogels.</p> "> Figure 2
<p>Schematic of microgel films prepared using EHD printing.</p> "> Figure 3
<p>(<b>a</b>) SEM image of P(AA-co-AM) hydrogel. (<b>b</b>) SEM image of 3 wt.% Car-P(AA-co-AM) hydrogel. (<b>c</b>) SEM image of 5 wt.% Car-P(AA-co-AM) hydrogel. (<b>d</b>) FT-IR spectra of carbomer and hydrogel.</p> "> Figure 4
<p>(<b>a</b>) State of hydrogel solution after being turned over. (<b>b</b>) Contact angles of hydrogel solutions containing 3 wt.%, 5 wt.%, and 7 wt.% carbomer.</p> "> Figure 5
<p>(<b>a</b>) Images of hydrogels with different numbers of layers printed using EHD printing. (<b>b</b>) Relationship between the number of printed layers and thickness of hydrogel. (<b>c</b>,<b>d</b>) Surface and cross-sectional views of hydrogels consisting of six layers printed using EHD printing.</p> "> Figure 6
<p>Electromechanical properties of P(AA-co-AM) copolymerization network hydrogels: (<b>a</b>) stress–strain curves, (<b>b</b>) elastic modulus, (<b>c</b>) toughness, and (<b>d</b>) ionic conductivity.</p> "> Figure 7
<p>Electromechanical properties of Car-P(AA-co-AM) hydrogels: (<b>a</b>) stress–strain curves. (<b>b</b>) elastic modulus, (<b>c</b>) toughness, (<b>d</b>) ionic conductivity, and (<b>e</b>) cyclic tensile stress–strain curves.</p> "> Figure 8
<p>(<b>a</b>) Resistance change in sensors under 50% strain during the stretch–recovery process. (<b>b</b>) Resistance change fitting curve and sensitivity of the sensor in the 0–250% strain range. (<b>c</b>,<b>d</b>) Response and recovery times of the sensor at 50% strain.</p> "> Figure 9
<p>Relative resistance variation in sensors during (<b>a</b>) 200 and (<b>b</b>) 1000 tensile release cycles at 50% strain. Cyclic resistance changes in (<b>c</b>) thin-film and (<b>d</b>) mesh-type hydrogel flexible strain sensors at 5–150% strain.</p> "> Figure 10
<p>Car-P(AA-co-AM) hydrogel flexible strain sensors for human motion monitoring: (<b>a</b>,<b>b</b>) finger flexion, (<b>c</b>) wrist flexion, and (<b>d</b>) exhalation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrogel Precursor Solutions
2.3. Preparation of Hydrogel
- (1)
- Preparation of P(AA-co-AM) hydrogels
- (2)
- Preparation of Car-P(AA-co-AM) hydrogels
2.4. Characterization and Properties
3. Results and Discussion
3.1. Preparation and Characterization of Car-P(AA-co-AM) Hydrogel
3.2. Printability of Hydrogel
3.3. Mechanical and Electrical Properties of Hydrogels
3.4. Sensing Properties of Hydrogel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, L.X.; Chee, P.L.; Sugiarto, S.; Yu, Y.; Shi, C.Q.; Yan, R.; Yao, Z.Q.; Shi, X.W.; Zhi, J.C.; Kai, D.; et al. Hydrogel-Based Flexible Electronics. Adv. Mater. 2023, 35, 2205326. [Google Scholar] [CrossRef] [PubMed]
- Min, J.H.; Tu, J.B.; Xu, C.H.; Lukas, H.; Shin, S.; Yang, Y.R.; Solomon, S.A.; Mukasa, D.; Gao, W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem. Rev. 2023, 123, 5049–5138. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Miao, J.L.; Fan, Q.; Zhang, W.X.; Zuo, X.W.; Tian, M.W.; Zhu, S.F.; Zhang, X.J.; Qu, L.J. Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv. Fiber Mater. 2022, 4, 361–389. [Google Scholar] [CrossRef]
- Claver, U.P.; Zhao, G. Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Adv. Eng. Mater. 2021, 23, 2001187. [Google Scholar] [CrossRef]
- Aaryashree; Sahoo, S.; Walke, P.; Nayak, S.K.; Rout, C.S.; Late, D.J. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res. 2021, 14, 3669–3689. [Google Scholar] [CrossRef]
- Lan, L.Y.; Ping, J.F.; Xiong, J.Q.; Ying, Y.B. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. Adv. Sci. 2022, 9, 2200560. [Google Scholar] [CrossRef] [PubMed]
- Meena, K.K.; Arief, I.; Ghosh, A.K.; Liebscher, H.; Hait, S.; Nagel, J.; Heinrich, G.; Fery, A.; Das, A. 3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: Onboard real-time tread wear monitoring system. Nano Energy 2023, 115, 108707. [Google Scholar] [CrossRef]
- Khalid, M.A.U.; Chang, S.H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Compos. Struct. 2022, 284, 115214. [Google Scholar] [CrossRef]
- Tian, H.; Shu, Y.; Cui, Y.L.; Mi, W.T.; Yang, Y.; Xie, D.; Ren, T.L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705. [Google Scholar] [CrossRef]
- Mandal, S.; Arief, I.; Chae, S.; Tahir, M.; Hoang, T.X.; Heinrich, G.; Wießner, S.; Das, A. Self-Repairable Hybrid Piezoresistive-Triboelectric Sensor Cum Nanogenerator Utilizing Dual-Dynamic Reversible Network in Mechanically Robust Modified Natural Rubber. Adv. Sens. Res. 2024, 2400036. [Google Scholar] [CrossRef]
- Peng, L.; Su, Y.T.; Yang, X.P.; Sui, G. A liquid metal/carbon nanotubes complex enabling ultra-fast polymerization of super-robust, stretchable adhesive hydrogels for highly sensitive sensor. J. Colloid Interface Sci. 2023, 638, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Jiang, L.; Yan, M.Q.; Bi, H.; Wang, Q.Y. Highly stretchable, tough and conductive chitin nanofiber composite hydrogel as a wearable sensor. Int. J. Biol. Macromol. 2023, 242, 124780. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yan, B.; Yang, J.Q.; Chen, L.Y.; Zeng, H.B. Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property. Adv. Mater. 2015, 27, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Yang, Y.T.; Cao, Y.X.; Wang, X.; Chen, Y.R.; Liu, H.Y.; Gao, Y.F.; Wang, J.F.; Liu, C.; Wang, W.J.; et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 2021, 403, 126431. [Google Scholar] [CrossRef]
- Chen, H.; Zhuo, F.L.; Zhou, J.; Liu, Y.; Zhang, J.B.; Dong, S.R.; Liu, X.Q.; Elmarakbi, A.; Duan, H.G.; Fu, Y.Q. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576. [Google Scholar] [CrossRef]
- Su, G.H.; Yin, S.Y.; Guo, Y.H.; Zhao, F.; Guo, Q.Q.; Zhang, X.X.; Zhou, T.; Yu, G.H. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, J.; Tang, Y.H. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers 2017, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Zhang, Y.B.; Li, H.Y.; Shen, J.; Zhang, F.F.; He, J.J.; Lin, J.Z.; Wang, B.; Niu, S.C.; Han, Z.W.; et al. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today 2023, 49, 101764. [Google Scholar] [CrossRef]
- Liu, S.J.; Li, L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wang, L.L.; Mi, Y.Y.; Zhao, S.S.; Qi, S.M.; Sun, M.; Peng, B.; Xu, Q.; Niu, Y.C.; Zhou, Y. Transparent stretchable hydrogel sensors: Materials, design and applications. J. Mater. Chem. C 2022, 10, 13351–13371. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.D.; Shen, B.; Wang, Y.R.; Peng, P.; Tang, F.Y.; Feng, J. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 117, 111298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.N.; Wei, Q.H.; Wang, Y.M.; Li, M.Y.; Li, D.H.; Zhang, L.Y. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int. J. Biol. Macromol. 2022, 219, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Maimaitiyiming, X.; Sun, S. 3D Printed Multifunctional Self-Adhesive and Conductive Polyacrylamide/Chitosan/Sodium Carboxymethyl Cellulose/CNT Hydrogels as Flexible Sensors. Macromol. Chem. Phys. 2023, 224, 2200272. [Google Scholar] [CrossRef]
- Mercadal, P.A.; Romero, M.R.; Montesinos, M.d.M.; Real, J.P.; Picchio, M.L.; Gonzalez, A. Natural, Biocompatible, and 3D-Printable Gelatin Eutectogels Reinforced with Tannic Acid-Coated Cellulose Nanocrystals for Sensitive Strain Sensors. ACS Appl. Electron. Mater. 2023, 5, 2184–2196. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Tang, A. Stretchable, adhesive, antifreezing and 3D printable double-network hydrogel for flexible strain sensors. Eur. Polym. J. 2022, 164, 110977. [Google Scholar] [CrossRef]
- Hirsch, M.; Charlet, A.; Amstad, E. 3D Printing of Strong and Tough Double Network Granular Hydrogels. Adv. Funct. Mater. 2021, 31, 2005929. [Google Scholar] [CrossRef]
- Song, K.; Compaan, A.M.; Chai, W.; Huang, Y. Injectable Gelatin Microgel-Based Composite Ink for 3D Bioprinting in Air. ACS Appl. Mater. Interfaces 2020, 12, 22453–22466. [Google Scholar] [CrossRef] [PubMed]
- Highley, C.B.; Song, K.H.; Daly, A.C.; Burdick, J.A. Jammed Microgel Inks for 3D Printing Applications. Adv. Sci. 2019, 6, 1801076. [Google Scholar] [CrossRef]
- Vo, T.H.; Lam, P.K.; Sheng, Y.-J.; Tsao, H.-K. Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors. ACS Appl. Mater. Interfaces 2023, 15, 33109–33118. [Google Scholar] [CrossRef]
- Feng, Q.; Li, D.; Li, Q.; Li, H.; Wang, Z.; Zhu, S.; Lin, Z.; Cao, X.; Dong, H. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. ACS Appl. Mater. Interfaces 2022, 14, 15653–15666. [Google Scholar] [CrossRef]
- Zheng, J.X.; Chen, G.Q.; Yang, H.L.; Zhu, C.J.; Li, S.N.; Wang, W.Q.; Ren, J.Y.; Cong, Y.; Xu, X.; Wang, X.W.; et al. 3D printed microstructured ultra-sensitive pressure sensors based on microgel-reinforced double network hydrogels for biomechanical applications. Mater. Horiz. 2023, 10, 4232–4242. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-W.; Sung, P.-J.; Thao Phuong, N.; Sheng, Y.-J.; Tsao, H.-K. UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Appl. Mater. Interfaces 2020, 12, 24450–24457. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Song, K.H.; Burrell, J.C.; Cullen, D.K.; Burdick, J.A. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support. Adv. Sci. 2019, 6, 1901229. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, D.; Li, Q.; Cao, X.; Dong, H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact. Mater. 2022, 9, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhou, J.; Wang, C.; Gong, H.; Liu, W.; Cen, W.; Yuan, G.; Long, Y. 3D printing of dual cross-linked hydrogel for fingerprint-like iontronic pressure sensor. Smart Mater. Struct. 2022, 31, 015019. [Google Scholar] [CrossRef]
- Zhang, Y.X.; He, Y.; Liang, Y.; Tang, J.; Yang, Y.; Song, H.M.; Zrinyi, M.; Chen, Y.M. Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel. Appl. Surf. Sci. 2023, 615, 156328. [Google Scholar] [CrossRef]
- Zou, Q.; Ma, Z.; Li, S.; Lei, Z.; Su, Q. Tunable ionic pressure sensor based on 3D printed ordered hierarchical mesh structure. Sens. Actuators A-Phys. 2020, 308, 112012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Cao, P.; Yang, T.; Ao, H.; Xing, B. Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method. Sensors 2024, 24, 3038. https://doi.org/10.3390/s24103038
Feng J, Cao P, Yang T, Ao H, Xing B. Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method. Sensors. 2024; 24(10):3038. https://doi.org/10.3390/s24103038
Chicago/Turabian StyleFeng, Junyan, Peng Cao, Tao Yang, Hezheng Ao, and Bo Xing. 2024. "Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method" Sensors 24, no. 10: 3038. https://doi.org/10.3390/s24103038
APA StyleFeng, J., Cao, P., Yang, T., Ao, H., & Xing, B. (2024). Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method. Sensors, 24(10), 3038. https://doi.org/10.3390/s24103038