Technology Selection for Inline Topography Measurement with Rover-Borne Laser Spectrometers
<p>(<b>A</b>) A multispectral 2D image of an aged basalt sample, captured with a microscope. (<b>B</b>) The topography measurement of the same sample, measured with multiwavelength digital holography, revealing (<b>C</b>) locally varying roughness and an angular profile. The line direction is from bottom right (x/<span class="html-italic">y</span>-axis pixel 0) to top left x/<span class="html-italic">y</span>-axis pixel 1630. The topography of the aged basalt sample was measured using multiwavelength digital holography (<a href="#sec3dot8-sensors-24-02872" class="html-sec">Section 3.8</a>).</p> "> Figure 2
<p>(<b>Left</b>) Simplified laser spectrometer architecture based on the RAX Raman spectrometer showing possible scanner locations A and B. (<b>Right</b>) Baseline implementation of an inline multispectral imaging camera, with the dashed line enclosing the imaging optical system of <a href="#sensors-24-02872-f0A1" class="html-fig">Figure A1</a>.</p> "> Figure 3
<p>Exemplary configurations for depth from focus, off-axis triangulation and inline triangulation configurations for inline laser spectroscopy.</p> "> Figure 4
<p>Spectrally encoded slit confocal microscopy (SESCoM) and multispectral line-field confocal scanning microscopy configurations for inline laser spectroscopy. LD: laser diode.</p> "> Figure 5
<p>Schematics of full-field TD-OCT and line-field SD-OCT. SLD: super-luminescent diode; PAD: polarization array detector; QWP: quarter-wave plate.</p> "> Figure 6
<p>Schematics of polarization multiplexed digital holography and incoherent digital holography based on linear conoscopy. CCD: charge-coupled device, PAD: polarization-array detector, FW: Fizeau wedge, VFOS: variable fiberoptic switch, FC: fiber combiner, LD: laser diode, LED: light-emitting diode, CL: cylindrical lens, QWP: quarter-wave plate, BC: birefringent crystal, BS: beam splitter, DBS: dichroic beam splitter, DOE: diffractive optical element.</p> "> Figure A1
<p>Infinite-conjugate-objective imaging system, modeled as a three-thin-lens system, as well as beam paths for equivalent one-lens (L’) and two-lens (L”) models.</p> "> Figure A2
<p>Definition of rover layout variables for front-, side- and downward-facing instruments.</p> "> Figure A3
<p>Calculated working distance parameters for front- and side-mounted instruments.</p> "> Figure A4
<p>Calculated working distance parameters for bottom-panel-mounted instruments.</p> "> Figure A5
<p>Calculated working distance parameters for in- or near-contact measuring instruments.</p> ">
Abstract
:1. Introduction
2. Requirements for A Topographic Measurement Device
3. Relevant 2D and 3D Technologies
3.1. Baseline 2D Imager Add-On
3.2. Depth Uncertainty in 3D Optical Measurement
3.3. Photogrammetry
3.4. Fringe Projection Profilometry
3.5. Depth from Focus
3.6. Confocal Microscopy
3.7. Coherence Scanning Interferometry
3.8. Multiwavelength Digital Holography
3.9. Incoherent Digital Holography
4. Comparison of the 3D Technologies
4.1. Spatial Performance of Topography Measurement
4.2. Mass and Power Estimation
4.3. Measurement Robustness
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Optical Model of a Baseline Imager
Appendix B. Working Distance, Measurement Volume Dependence on Rover Mounting Configuration
Appendix C. Design Parameters Used in Calculations
Technology | Parameter | Contact Window | Bottom Panel Mounted | Front Panel Mounted | Units |
---|---|---|---|---|---|
Imager | z1 | 10 | 150 | 500 | mm |
f1 | 10.000 | 49.367 | 180.766 | mm | |
D1 | 4 | 37.5 | 125 | mm | |
z2 | 6 | 52 | 200 | mm | |
f2 | inf | −21.585 | −83.126 | mm | |
d2 | 4 | 11 | 36.7 | mm | |
z3 | 8 | 40 | 50 | mm | |
f3 | 10 | 18.3 | 61.2 | mm | |
d3 | 4 | 11 | 36.7 | mm | |
NAout | 0.2 | 0.3 | 0.3 | - | |
NAin | 0.2 | 0.125 | 0.125 | - | |
|M| | 1.00 | 0.42 | 0.42 | - | |
pixel size | 0.001 | 0.001 | 0.001 | mm | |
Spectrometer | λ_spectometer, mean | 0.00061 | 0.00061 | 0.00061 | mm |
Confocal | K | 12 | 12 | 12 | - |
λ_inline | 0.0007 | 0.0007 | 0.0007 | µm | |
off-axis tri. | β | 33 | 33 | 16.5 | ° |
b | 145 | 90 | 6 | mm | |
inline tri. | β | 5.73 | 3.58 | 3.58 | ° |
FPP | T | 0.1 | 0.1 | 0.1 | mm |
δφ/2π | 0.01 | 0.01 | 0.01 | - | |
TD-OCT | λc | 0.75 | 0.75 | 0.75 | µm |
Δλ | 0.01 | 0.01 | 0.01 | µm | |
FD-OCT | λc | 0.6075 | 0.6075 | 0.6075 | µm |
Δλ | 0.145 | 0.145 | 0.145 | µm | |
N | 390 | 390 | 390 | - | |
MW-DH | λ0 | 0.8 | 0.8 | 0.8 | |
λ1 | 0.80025608 | 0.800138691 | 0.800025601 | µm | |
λ2 | 0.80102531 | 0.80090235 | 0.800102413 | µm | |
λ3 | 0.81672656 | 0.83998467 | 0.801641762 | µm | |
Λ1 | 2500 | 4615.384615 | 25000 | µm | |
Λ2 | 625 | 710.0591716 | 6250 | µm | |
Λ3 | 39.0625 | 16.80613424 | 390.625 | µm | |
IDH | Klin | −155 | −155 | −155 | - |
NAill | 0.1 | 0.05 | 0.02 | - | |
|MIDH| | 5.56 | 3.47 | 3.47 | - |
Appendix D. Equations to Convert Working Distances and Diameters into One-, Two-, and Three-Thin-Lens Paraxial Systems
Appendix E. 3D Optical Techniques Precluded from This Study
Appendix E.1. Hyperspectral Holography, or 3D Imaging Spectroscopy
Appendix E.2. Plenoptic Camera
Appendix E.3. Structure from Motion (SfM)
Appendix E.4. Other Precluded Techniques
References
- Beyssac, O.; Forni, O.; Cousin, A.; Udry, A.; Kah, L.C.; Mandon, L.; Schröder, S.; Simon, J.I.; Toplis, M.J.; Veneranda, M.; et al. Petrological Traverse of the Olivine Cumulate Séítah Formation at Jezero Crater, Mars: A Perspective from SuperCam Onboard Perseverance. J. Geophys. Res. Planets 2023, 128, e2022JE007638. [Google Scholar] [CrossRef]
- Maurice, S.; Clegg, S.M.; Wiens, R.C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Sautter, V.; Mangold, N.; Le Deit, L.; et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. At. Spectrom. 2016, 31, 863–889. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Wogsland, B.V.; Wogsland, B.V.; Minitti, M.E.; Minitti, M.E.; Kah, L.C.; Kah, L.C.; Yingst, R.A.; Yingst, R.A.; Abbey, W.; Abbey, W.; et al. Science and Science-Enabling Activities of the SHERLOC and WATSON Imaging Systems in Jezero Crater, Mars. Earth Space Sci. 2023, 10, e2022EA002544. [Google Scholar] [CrossRef]
- Josset, J.-L.; Westall, F.; Hofmann, B.A.; Spray, J.; Cockell, C.; Kempe, S.; Griffiths, A.D.; De Sanctis, M.C.; Colangeli, L.; Koschny, D.; et al. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations and Science Validation Activities. Astrobiology 2017, 17, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Edgett, K.S.; Yingst, R.A.; Ravine, M.A.; Caplinger, M.A.; Maki, J.N.; Ghaemi, F.T.; Schaffner, J.A.; Bell, J.F.; Edwards, L.J.; Herkenhoff, K.E.; et al. Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation. In Mars Science Laboratory; Grotzinger, J., Vasavada, A., Russell, C., Eds.; Springer New York: New York, NY, USA, 2013; pp. 259–317. ISBN 978-1-4614-6338-2. [Google Scholar]
- Piatek, J.L.; Hapke, B.W.; Nelson, R.M.; Smythe, W.D.; Hale, A.S. Scattering properties of planetary regolith analogs. Icarus 2004, 171, 531–545. [Google Scholar] [CrossRef]
- Minitti, M.E.; Kah, L.C.; Yingst, R.A.; Edgett, K.S.; Anderson, R.C.; Beegle, L.W.; Carsten, J.L.; Deen, R.G.; Goetz, W.; Hardgrove, C.; et al. MAHLI at the Rocknest sand shadow: Science and science-enabling activities. J. Geophys. Res. Planets 2013, 118, 2338–2360. [Google Scholar] [CrossRef]
- Paar, G.; Ortner, T.; Tate, C.; Deen, R.G.; Abercrombie, P.; Vona, M.; Proton, J.; Bechtold, A.; Calef, F.; Barnes, R.; et al. Three-Dimensional Data Preparation and Immersive Mission-Spanning Visualization and Analysis of Mars 2020 Mastcam-Z Stereo Image Sequences. Earth Space Sci. 2023, 10, e2022EA002532. [Google Scholar] [CrossRef]
- Fonseca, J.; O’Sullivan, C.; Coop, M.R.; Lee, P.D. Non-invasive characterization of particle morphology of natural sands. Soils Found. 2012, 52, 712–722. [Google Scholar] [CrossRef]
- Isaacson, P.J.; Basu-Sarbadhikari, A.; Pieters, C.; Klima, R.; Hiroi, T.; Liu, Y.; Taylor, L. The lunar rock and mineral characterization consortium: Deconstruction and integrated mineralogical, petrologic and spectroscopic analyses of mare basalts. Meteorit. Planet. Sci. 2011, 46, 228–251. [Google Scholar] [CrossRef]
- Friedrich, J.M.; Chen, M.M.; Giordano, S.A.; Matalka, O.K.; Strasser, J.W.; Tamucci, K.A.; Rivers, M.L.; Ebel, D.S. Size-frequency distributions and physical properties of chondrules from x-ray computed microtomography and digital data extraction. J. Micoscopy Res. Tech. 2021, 85, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Nakamura, T.; Kimura, M.; Zolensky, M.E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 2011, 333, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.G.; Corlies, P.; Tate, C.; Barrington, M.; Bell, J.F.; Maki, J.N.; Caplinger, M.; Ravine, M.; Kinch, K.M.; Herkenhoff, K.; et al. Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Sci. Rev. 2021, 217, 29. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Cousins, C.R.; Cross, R.E.; et al. The PanCam Instrument for the ExoMArs Rover. Astrobiology 2017, 17, 511–541. [Google Scholar] [CrossRef]
- Garvin, J.B.; Edgett, K.S.; Kennedy, M.R.; Minitti, M.E.; McBride, M.J.; Krezoski, G.M.; Dotson, R.; Yingst, R.A.; Gomez-Elvira, J. Assessment of Micro-Relief Derived from Curiosity’s MAHLI Stereo Imaging. In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Liebe, C.C.; Pedersen, D.A.K.; Allwood, A.; Bang, A.; Bartman, S.; Benn, M.; Denver, T.; Doran, G.; Foote, M.C.; Jorgensen, A.; et al. Autonomous Sensor System for Determining Instrument Position Relative to Unknown Surfaces Utilized on Mars Rover. IEEE Sens. J. 2022, 22, 18933–18943. [Google Scholar] [CrossRef]
- Lingenauber, M.; Fröhlich, F.; Krutz, U.; Nissler, C.; Strobl, K. (Eds.) In-Situ close-range imaging with plenoptic cameras. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S.E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; et al. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2. Space Sci. Rev. 2017, 208, 375–400. [Google Scholar] [CrossRef]
- Michel, P.; Ulamec, S.; Böttger, U.; Grott, M.; Murdoch, N.; Vernazza, P.; Sunday, C.; Zhang, Y.; Valette, R.; Castellani, R.; et al. The MMX rover: Performing in situ surface investigations on Phobos. Earth Planets Space 2022, 74, 2. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Pilorget, C.; Riu, L.; Hamm, V.; Brunetto, R.; Ho, T.-M.; Jaumann, R.; Langevin, Y.; Moussi, A.; Poulet, F.; et al. MicrOmega/MASCOT first results. Planet. Space Sci. 2022, 210, 105393. [Google Scholar] [CrossRef]
- Tsuchiyama, A.; Uesugi, M.; Mashushima, T.; Michikami, T.; Kadono, T.; Nakamura, T.; Uesugi, K. Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith. Science 2011, 333, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Dubessy, J.; Caumon, M.-C.; Rull, F. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage; European Mineralogical Union: London, UK, 2012; ISBN 9780903056366. [Google Scholar]
- Cho, Y.; Böttger, U.; Rull, F.; Hübers, H.-W.; Belenguer, T.; Börner, A.; Buder, M.; Bunduki, Y.; Dietz, E.; Hagelschuer, T.; et al. In situ science on Phobos with the Raman spectrometer for MMX (RAX): Preliminary design and feasibility of Raman measurements. Earth Planets Space 2021, 73, 232. [Google Scholar] [CrossRef]
- Rull, F.; Maurice, S.; Hutchinson, I.; Moral, A.; Perez, C.; Diaz, C.; Colombo, M.; Belenguer, T.; Lopez-Reyes, G.; Sansano, A.; et al. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars. Astrobiology 2017, 17, 627–654. [Google Scholar] [CrossRef]
- Bernardi, P.; Pares, L.; Newell, R.T.; Nelson, T.; Gasnault, O. (Eds.) Optical Design and Performance of the SuperCam Instrument for the Perseverence Rover. In International Conference on Space Optics—ICSO 2020; SPIE: Bellingham, WA, USA, 2021; p. 118521H. [Google Scholar]
- ISO 14688-1:2017; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 1: Identification and Description. International Organization for Standardization: Geneva, Switzerland, 2017.
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; ISBN 9781118567371. [Google Scholar]
- Schröder, S.; Böttger, U.; Buder, M.; Bunduki, Y.; Cho, Y.; Dietz, E.; Hagelschuer, T.; Hübers, H.-W.; Kameda, S.; Kopp, E.; et al. (Eds.) RAX: The Raman Spectrometer on the MMX Rover for In-Situ Surface Analysis on Phobos. In Proceedings of the 54th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 13–17 March 2023. [Google Scholar]
- Latychevskaia, T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl. Opt. 2019, 58, 3597–3603. [Google Scholar] [CrossRef] [PubMed]
- Häusler, G.; Ettl, S. Limitations of Optical 3D Sensors. In Optical Measurement of Surface Topography; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-12011-4. [Google Scholar]
- Xiao, Z.; Zeng, L.; Li, Y.; Shao, J.; Ma, C.; Zhang, W.; Peng, M. High-Precision Measurement of 3-D Rock Morphology on Mars Using Stereo Rover Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Hirschmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 2. [Google Scholar]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging, 3rd ed.; De Gruyter: Berlin, Germany, 2020; ISBN 978-3-11-060724-6. [Google Scholar]
- Gorthi, S.S.; Rastogi, P. Fringe Projection Techniques: Whither we are? Opt. Lasers Eng. 2010, 48, 133–140. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic fringe projection profilometry: A review. Opt. Lasers Eng. 2020, 135, 106192. [Google Scholar] [CrossRef]
- Zhang, S.; Yau, S.-T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl. Opt. 2007, 46, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhao, H.; Tan, Y. Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method. Opt. Eng 1997, 36, 3167. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, J.; Guan, C.; Dai, Q.; Tian, F. Three-core fiber-based shape-sensing application. Opt. Lett. 2008, 33, 578–580. [Google Scholar] [CrossRef]
- Thorstensen, J.; Thielemann, J.T.; Risholm, P.; Gjessing, J.; Dahl-Hansen, R.; Tschudi, J. High-quality dense 3D point clouds with active stereo and a miniaturizable interferometric pattern projector. Opt. Express 2021, 29, 41081–41097. [Google Scholar] [CrossRef]
- Li, E.B.; Peng, X.; Xi, J.; Chicharo, J.F.; Yao, J.Q.; Zhang, D.W. Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry. Opt. Express 2005, 13, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.; He, X.Y.; Wang, C.F.; Tay, C.J.; Shang, H.M. Shape measurement of small objects using LCD fringe projection with phase shifting. Opt. Commun. 2001, 189, 21–29. [Google Scholar] [CrossRef]
- Onogi, S.; Kawase, T.; Sugino, T.; Nakajima, Y. Investigation of Shape-from-Focus Precision by Texture Frequency Analysis. Electronics 2021, 10, 1870. [Google Scholar] [CrossRef]
- Malik, A.S.; Choi, T.-S. Consideration of illumination effects and optimization of window size for accurate calculation of depth map for 3D recovery. Pattern Recognit. 2007, 40, 154–170. [Google Scholar] [CrossRef]
- Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 2013, 46, 1415–1432. [Google Scholar] [CrossRef]
- Lee, I.; Mahmood, M.T.; Choi, T.-S. Adaptive window selection for 3D shape recovery from image focus. J. Opt. Laser Technol. 2013, 45, 21–31. [Google Scholar] [CrossRef]
- Blendowske, R. Role of optics in the accuracy of depth-from-defocus systems: Comment. J. Opt. Soc. Am. A 2007, 24, 3242–3244. [Google Scholar] [CrossRef] [PubMed]
- Blayvas, I.; Kimmel, R.; Rivlin, E. Role of optics in the accuracy of depth-from-decous systems. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2007, 24, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R. Vollflächige konfokale Single-Shot Messtechnik unter Verwendung hyperspektraler Sensoren. Ph.D. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2022. [Google Scholar]
- Wilson, T. Resolution and optical sectioning in the confocal microscope. J. Microsc. 2011, 244, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Tiziani, H.J.; Achi, R.; Krämer, R.N.; Wiegers, L. Theoretical analysis of confocal microscopy with microlenses. Appl. Opt. 1996, 35, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, Y.S.; Rouse, A.R.; Donaldson, L.; Hopkins, M.F.; Gmitro, A.F. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 1999, 38, 7133–7144. [Google Scholar] [CrossRef] [PubMed]
- Tearney, G.J.; Webb, R.H.; Bouma, B.E. Spectrally encoded confocal microscopy. Opt. Lett. 1998, 23, 1152–1154. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, D.; Gewon, D. Spectrally encoded slit confocal microscopy. Opt. Lett. 2006, 31, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Yoo, H. Three-dimensional confocal reflectance microscopy for surface metrology. Meas. Sci. Technol. 2021, 32, 102002. [Google Scholar] [CrossRef]
- Jordan, H.-J.; Wegner, M.; Tiziani, H. Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol. 1998, 9, 1142–1151. [Google Scholar] [CrossRef]
- Taphanel, M. Chromatisch Konfokale Triangulation: Hochgeschwindigkeits 3D-Sensorik auf Basis der Wellenlängenschätzung mit Optimierten Filtern. Ph.D. Dissertation, Karlsruhe Institut für Technologie, Karlsruhe, Germany, 2015. [Google Scholar]
- de Groot, P. Principles of interference microscopy for the measurements of surface topography. Adv. Opt. Photon. 2015, 7, 1–65. [Google Scholar] [CrossRef]
- Gao, F.; Leach, R.; Petzing, J.; Coupland, J.M. Surface measurement errors with commercial white light interferometers. Meas. Sci. Technol. 2008, 19, 015303. [Google Scholar] [CrossRef]
- Lawman, S.; Zhang, Z.; Shen, Y.-C.; Zheng, Y. Line Field Optical Coherence Tomography. Photonics 2022, 9, 946. [Google Scholar] [CrossRef]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Opthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 59–86. ISBN 978-3-030-16637-3. [Google Scholar]
- Rolland, J.P.; Meemon, P.; Murali, S.; Thompson, K.P.; Lee, K. Gabor-based fusion technique for Optical Coherence Microscopy. Opt. Express 2010, 18, 3632–3642. [Google Scholar] [CrossRef] [PubMed]
- Sarunic, M.; Weinberg, S.; Ellerlbee, A.; Applegate, B.; Izatt, J.A. (Eds.) Full-field swept-source phase microscopy. In Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X; SPIE: San Jose, CA, USA, 2006. [Google Scholar]
- Guilhot, D.; Ribes-Pleguezuelo, P. Laser Technology in Photonic Applications for Space. Instruments 2019, 3, 50. [Google Scholar] [CrossRef]
- Wang, D.; Rongguang, L. Simultaneous polarization Mirau interferometer based on pixelated polarization camera. Opt. Lett. 2016, 41, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, K.; McNamara, P.M.; Alexandrov, S.; O’Gorman, S.; Hogan, J.; Wilson, C.; Leahy, M.J. Performance Review of Multiple Reference Versus Time Domain Optical Coherence Tomography. IEEE Photonics J. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Hillmann, D.; Lührs, C.; Bonin, T.; Koch, P.; Hüttmann, G. Holoscopy—Holographic optical coherence tomography. Opt. Lett. 2011, 36, 2390–2392. [Google Scholar] [CrossRef] [PubMed]
- Robles, F.E.; Wilson, C.; Grant, G.; Wax, A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 2011, 5, 744–747. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical coherence tomography—Principles and applications. Rep. Prog. Phys. 2003, 66, 239–303. [Google Scholar] [CrossRef]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268–1271. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Cai, L.Z.; Wang, Y.R.; Yang, X.L.; Meng, X.F.; Dong, G.Y.; Shen, X.X.; Zhang, H. Generalized phase-shifting interferometry with arbitrary unknown phase shifts: Direct wave-front reconstruction by blind phase shift extraction and its experimental verification. Appl. Phys. Lett. 2007, 90, 121124. [Google Scholar] [CrossRef]
- Awatsuji, Y.; Sasada, M.; Kubota, T. Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 2004, 85, 1069–1071. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Zhang, Q.; Su, X.; Asuni, A.; Kemao, Q. Quality-guided phase unwrapping technique: Comparison of quality maps and guiding strategies. Appl. Opt. 2011, 50, 6214–6224. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Zappa, E.; Busca, G. Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry. J. Opt. Lasers Eng. 2008, 46, 106–116. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H. Numerical reconstruction of digital holograms for three-dimensional shape measurement. J. Opt. A Pure Appl. Opt. 2004, 6, 396–400. [Google Scholar] [CrossRef]
- Bianco, V.; Memmolo, P.; Leo, M.; Montresor, S.; Distante, C.; Paturzo, M.; Picart, P.; Javidi, B.; Ferraro, P. Strategies for reducing speckle noise in digital holography. Light Sci. Appl. 2018, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Osten, W.; Seebacher, S. Direct shape measurement by difital wavefront reconstruction and multiwavelength contouring. Opt. Eng 1999, 39, 79–85. [Google Scholar] [CrossRef]
- Piniard, M.; Sorrente, B.; Hug, G.; Picart, P. Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography. Opt. Express 2021, 29, 14720–14735. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, Y.; Zhu, Z.; Nie, S. Single-exposure color digital holography. Proc. SPIE 2010, 7848, 784826. [Google Scholar]
- Schiller, A.; Beckmann, T.; Fratz, M.; Bertz, A.; Carl, D.; Buse, K. Multiwavelength holography: Height measurements despite axial motion of several wavelengths during exposure. Appl. Opt. 2019, 58, G48–G51. [Google Scholar] [CrossRef] [PubMed]
- Seyler, T.; Bienkowski, L.; Beckmann, T.; Fratz, M.; Bertz, A.; Carl, D. Multiwavelength digital holography in the presence of vibrations: Laterally resolved multistep phase-shift extraction. Appl. Opt. 2019, 58, G112–G119. [Google Scholar] [CrossRef] [PubMed]
- Claus, D.; Alekseenko, I.; Grabherr, M.; Pedrini, G.; Hibst, R. Snap-shot topography measurement via dual-VCSEL and dual wavelength holographic interferometry. Light Adv. Manuf. 2021, 2, 29. [Google Scholar] [CrossRef]
- Yamaguchi, I. Contouring of rough surfaces by digital holography. In Proceedings of the 10th IMEKO TC14 Symposium on Laser Metrology for Precision Measurement and Inspection in Industry, Braunschweig, Germany, 12–13 September 2011. [Google Scholar]
- Osten, W.; Seebacher, S.; Baumbach, T.; Jueptner, W. Absolute shape control of microcomponents using digital holography and multiwavelength contouring. Metrology-based Control for Micro-Manufacturing. Proc. SPIE 2001, 4275, 71–84. [Google Scholar] [CrossRef]
- Tahara, T. Review of incoherent digital holography: Applications to multidimensional incoherent digital holographic microscopy and palm-sized digital holographic recorder—Holosensor. Front. Photonics 2022, 2, 829139. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.; Choi, K.; Hahn, J.; Min, S.-W.; Kim, H. Digital Incoherent Compressive Holography Using a Geometric Phase Metalens. Sensors 2021, 21, 5624. [Google Scholar] [CrossRef] [PubMed]
- Sirat, G.; Psaltis, D. Conoscopic Holograms. Opt. Commun. 1988, 65, 243–249. [Google Scholar] [CrossRef]
- Rosen, J.; Kelner, R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express 2014, 22, 29048–29066. [Google Scholar] [CrossRef] [PubMed]
- Häusler, G.; Herrmann, J. Range sensing by shearing interferometetry: Influence of speckle. Appl. Opt. 1988, 27, 4631–4637. [Google Scholar] [CrossRef] [PubMed]
- Sirat, G.; Vecht, J.; Malet, Y. Linear Conoscopic. Holography. Patent 08/942,379, 10 January 1997. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; McGraw Hill: New York, NY, USA, 1968. [Google Scholar]
- Häusler, G.; Hutfless, J.; Maul, M.; Weissmann, H. Range sensing based on shearing interferometetry. Appl. Opt. 1988, 27, 4638–4644. [Google Scholar] [CrossRef] [PubMed]
- Vayugundla, M.; Bodenmüller, T.; Schuster, M.; Müller, M.; Meyer, L.; Kenny, P.; Schuler, F.; Bihler, M.; Strüzl, W.; Langwald, J.; et al. (Eds.) The MMX Rover on Phobos: The Preliminary Design of the DLR Autonomous Navigation Experiment. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021. [Google Scholar]
- Yingst, R.A.; Edgett, K.S.; Kennedy, M.R.; Krezoski, G.M.; McBride, M.J.; Minitti, M.E.; Ravine, M.A.; Williams, R.M.E. MAHLI on Mars: Lessons learned operating a geoscience camera on a landed payload robotic arm. Geosci. Instrum. Methods Data Syst. 2016, 5, 205–217. [Google Scholar] [CrossRef]
- Tahara, T.; Ito, T.; Ichihashi, Y.; Oi, R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. Opt. Lett. 2020, 45, 2482–2485. [Google Scholar] [CrossRef] [PubMed]
- Yoshimori, K. Interferometric spectral iamging for three-dimensional objects illuminated by a natural light source. J. Opt. Soc. Am. A 2001, 18, 765–770. [Google Scholar] [CrossRef]
- Kalenkov, S.G.; Kalenkov, G.S.; Shtanko, A.E. Continuous phase-shifting holography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2020, 37, 39–44. [Google Scholar] [CrossRef]
- Naik, D.N.; Pedrini, G.; Takeda, M.; Osten, W. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer. Opt. Lett. 2014, 39, 1857–1860. [Google Scholar] [CrossRef] [PubMed]
- Lumsdaine, A.; Georgiev, T. The focused plenoptic camera. In Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), San Francisco, CA, USA, 16–17 April 2009. [Google Scholar]
- Ng, R.; Levoy, M.; Bredif, M.; Duval, G.; Horowitz, M.; Hanrahan, P. Light Field Photography with a Hand-Held Plenoptic Camera; Computer Science Tech Report CTSR 2(11); Stanford University: Stanford, CA, USA, 2005. [Google Scholar]
- Georgiev, T.; Zheng, K.C.; Curless, B.; Salesin, D.; Nayar, S.; Intwala, C. (Eds.) Spatio-angular resolution tradeoff in integral photography. In Proceedings of the 17th Eurographics Conference on Rendering Techniques, Porto, Portugal, 17–19 June 2006. [Google Scholar]
- Krutz, U.; Lingenauber, M.; Strobl, K.; Fröhlich, F.; Buder, M. (Eds.) Diffraction model of a plenoptic camera for in-situ space exploration. In Proceedings of the Unconventional Imaging, Strasbourg, France, 22–26 April 2018. [Google Scholar]
- Heinze, C.; Spyropoulos, S.; Hussmann, S.; Perwass, C. Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras. IEEE Trans. Instrum. Meas. 2016, 65, 1197–1205. [Google Scholar] [CrossRef]
- Nikolov, I.; Madsen, C. Benchmarking Close-range Structure from Motion 3D Reconstruction Software Under Varying Capturing Conditions. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection Capturing Conditions; EuroMed, 2016, Nicosia, C., Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-48496-9. [Google Scholar]
- Maki, J.N.; Gruel, D.; McKinney, C.; Ravine, M.A.; Morales, M.; Lee, D.; Willson, R.; Copley-Woods, D.; Valvo, M.; Goodsall, T.; et al. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. Space Sci. Rev. 2020, 216, 137. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C. Transport of Intensity Equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Zheng, G.; Shen, C.; Jiang, S.; Song, P.; Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 2021, 3, 207–223. [Google Scholar] [CrossRef]
- Guo, K.; Dong, S.; Zheng, G. Fourier Ptychography for Brightfield, Phase, Darkfield, Reflective, Multi-Slice, and Fluorescence Imaging. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 77–88. [Google Scholar] [CrossRef]
- Poon, T.-C.; Wu, M.H.; Shinoda, K.; Suzuki, Y. Optical scanning holography. Proc. IEEE 1996, 84, 753–764. [Google Scholar] [CrossRef]
Mounting Configuration | Max. Working Distance (mm) | Working Distance Range * (mm) | Resolution ** (µm) | Minimum Measurement Volume (mm3) |
---|---|---|---|---|
Front/side panel | 500 | 150 | 30 | 10 × 10 × 10 |
Bottom panel | 150 | 30 | 10 | 2 × 2 × 2 |
Contact window | 10 | 3 | 5 | 1 × 1 × 1 |
Front Panel-Mounted NAin = 0.125, WD = 500 mm | Bottom Panel-Mounted NAin = 0.125, WD = 150 mm | Contact Window NAin = 0.2, WD = 10 mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Requirements | δx (µm) | δz (µm) | Δx (mm) | Δz* (mm) | δx (µm) | δz (µm) | Δx (mm) | Δz* (mm) | δx (µm) | δz (µm) | Δx (mm) | Δz* (mm) | |
Technology | (<30) | (<30) | (>10) | (>10) | (<10) | (<10) | (>2) | (>2) | (<5) | (<5) | (>1) | (>1) | |
Baseline Imager | 3.42 | - | 26.4 | 0.24 | 3.42 | - | 26.4 | 0.08 | 2.14 | - | 11 | 0.025 | |
Depth from Focus | 3.42 | 18 | 26.4 | 0.02 | 3.42 | 18 | 26.4 | 0.018 | 2.14 | 6.15 | 11 | 0.006 | |
Multi-λ Confocal Line Scan | 3.42 | 4.62 | 26.4 | 0.009 | 3.42 | 4.62 | 26.4 | 0.009 | 2.14 | 1.82 | 11 | 0.004 | |
Spectral-Encoded Confocal Slit | 3.42 | 4.62 | 26.4 | 0.009 | 3.42 | 4.62 | 26.4 | 0.009 | 2.14 | 1.82 | 11 | 0.004 | |
Stereography (Off-Axis) | 3.42 | 23.6 | 26.4 | 0.24 | 3.42 | 11.4 | 26.4 | 0.08 | 2.14 | 7.12 | 11 | 0.025 | |
PS-FPP (Off-Axis) | 3.42 | 3.46 | 26.4 | 0.24 | 3.42 | 1.74 | 26.4 | 0.08 | 2.14 | 1.74 | 11 | 0.025 | |
PS-FPP (Inline) | 6.83 | 16 | 26.4 | 0.24 | 6.83 | 16 | 26.4 | 0.08 | 4.27 | 10 | 11 | 0.025 | |
Full-field TD-OCT | 3.42 | 2.07 | 26.4 | 0.004 | 3.42 | 2.07 | 26.4 | 0.004 | 2.14 | 2.07 | 11 | 0.004 | |
Line-scan SD-OCT | 3.42 | 0.1 | 26.4 | 0.24 | 3.42 | 0.1 | 26.4 | 0.08 | 2.14 | 0.1 | 11 | 0.025 | |
Multi-λ DH | 5.25 | 3.91 | 26.4 | 12.5 | 5.25 | 0.17 | 26.4 | 2.31 | 3.28 | 0.39 | 11 | 1.25 | |
Incoherent DH (Linear Conoscopy) | 21.35 | 2.57 | 26.4 | 1.50 | 8.54 | 2.57 | 26.4 | 0.20 | 4.27 | 1 | 11 | 0.050 |
Technology | Mass | Power | No. CCD Captures | Inline | ST | Sample Difficulties | Other Issues |
---|---|---|---|---|---|---|---|
Depth from Focus | ○ | ○ | 100–500 | √ | √ | Low textures | Lateral smoothing |
Multi-λ Confocal Line-scan | ○ | ● | 200,000–1,000,000 | √ | × | Defocus cross talk | Autofocus precision 1D scanner No zoom support |
Spectral-Encoded Confocal Slit | ○ | ◑ | 200–1000 | √ | × | Colorful objects Defocus cross talk | Autofocus precision Not multispectral No zoom support |
Stereography (Off-Axis) | ●○ | ◑ | 10–40 | × | √ | Low textures | Refocusable 2nd camera |
PS-FPP (Off-Axis) | ● | ● | 10–40 | × | √ | Low backscattering surfaces * | Refocusable projector SLM/display usage |
PS-FPP (Inline) | ◑ | ◑ | 10–40 | √ | √ | Low backscattering surfaces * | Split-aperture aberrations SLM/display usage |
Plenoptic Camera | ○ | ○ | 25–40 | √ | √ | Low textures | High depth uncertainty |
Full-Field TD-OCT | ◑ | ● | 2000–4000 | √ | √ | Defocus cross talk Volume scatter | No variable-focus Mirau Vibration sensitivity Autofocus precision |
Line-scan SD-OCT | ◑ | ● | 10,000–20,000 | √ | × | Defocus cross-talk volume scatter | No variable-focus Mirau 1D scanner Vibration sensitivity No zoom support |
Multi-λ DH | ◑ | ●○ | 4–10 | √ | √ | Volume scatter | Inline λ-meter needed Speckle decorrelation |
Incoherent DH (Linear Conoscopy) | ● | ○ | 5000–20,000 | √ | √ | Volume scatter | Unconventional 1D scanner Low SNR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, C.; Haist, T.; Laskin, G.; Schröder, S.; Reichelt, S. Technology Selection for Inline Topography Measurement with Rover-Borne Laser Spectrometers. Sensors 2024, 24, 2872. https://doi.org/10.3390/s24092872
Ryan C, Haist T, Laskin G, Schröder S, Reichelt S. Technology Selection for Inline Topography Measurement with Rover-Borne Laser Spectrometers. Sensors. 2024; 24(9):2872. https://doi.org/10.3390/s24092872
Chicago/Turabian StyleRyan, Conor, Tobias Haist, Gennadii Laskin, Susanne Schröder, and Stephan Reichelt. 2024. "Technology Selection for Inline Topography Measurement with Rover-Borne Laser Spectrometers" Sensors 24, no. 9: 2872. https://doi.org/10.3390/s24092872
APA StyleRyan, C., Haist, T., Laskin, G., Schröder, S., & Reichelt, S. (2024). Technology Selection for Inline Topography Measurement with Rover-Borne Laser Spectrometers. Sensors, 24(9), 2872. https://doi.org/10.3390/s24092872