A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique
<p>Ground deformation investigated in Kunming. (<b>a</b>) the uplift of building steps, (<b>b</b>) ground crack, (<b>c</b>) ground subsidence, (<b>d</b>) wall crack caused by the groud deformation.</p> "> Figure 2
<p>Study area and synthetic aperture radar (SAR) data coverage used in this study; corresponding data are superimposed on the digital elevation model (DEM).</p> "> Figure 3
<p>Geological map of study area. The black solid line represents quaternary active faults.</p> "> Figure 4
<p>The distribution of the temporal and spatial baselines from (<b>a</b>) Advanced Land Observation Satellite (ALOS-1) and (<b>b</b>) Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) in this study.</p> "> Figure 5
<p>The annual deformation velocity maps from ALOS-1 (<b>left</b>) and COSMO-SkyMed (<b>right</b>) in this study. The red cross shows the reference point and the black rectangles denote the subsiding region.</p> "> Figure 6
<p>Changes in buildings from ALOS-1 (<b>left</b>) and COSMO-SkyMed (<b>right</b>) in this study.</p> "> Figure 7
<p>Comparison of annual deformation velocity between leveling and InSAR from (<b>a</b>) the L-band ALOS-1 and (<b>b</b>) the X-band COSMO-SkyMed.</p> "> Figure 8
<p>Comparison of deformation between the ALOS-1 and Sentinel-1A datasets. (<b>a</b>) The result of ALOS-1. (<b>b</b>) The result of Sentinel-1A.</p> "> Figure 9
<p>Comparison of deformation between the COSMO-SkyMed and Sentinel-1A datasets. The <a href="#sensors-19-04425-f009" class="html-fig">Figure 9</a>a show the result of COSMO-SkyMed and <a href="#sensors-19-04425-f009" class="html-fig">Figure 9</a>b show the result of Sentinel-1A.</p> "> Figure 10
<p>Time series deformation in Guandu (marked with black rectangles in <a href="#sensors-19-04425-f005" class="html-fig">Figure 5</a>) observed from L-band ALOS-1 images. The time series deformation at point P1 will be extracted for further analysis.</p> "> Figure 11
<p>Time series deformation in Guandu (marked with black rectangles in <a href="#sensors-19-04425-f005" class="html-fig">Figure 5</a>) observed using X-band COSMO-SkyMed images. The time series deformation at point P1 will be extracted for further analysis.</p> "> Figure 12
<p>Time series deformation at point P1 marked in <a href="#sensors-19-04425-f010" class="html-fig">Figure 10</a> and <a href="#sensors-19-04425-f011" class="html-fig">Figure 11</a>. The blue squares and red circles represent deformation for the L-band and the X-band, respectively.</p> "> Figure 13
<p>Time series deformation in Xishan (marked with black rectangles in <a href="#sensors-19-04425-f005" class="html-fig">Figure 5</a>) observed using L-band ALOS-1 images. The time series deformation at point P2 will be extracted for further analysis.</p> "> Figure 14
<p>Time series deformation in Xishan (marked with black rectangles in <a href="#sensors-19-04425-f005" class="html-fig">Figure 5</a>) observed from X-band COSMO-SkyMed images. The time series deformation at point P2 will be extracted for further analysis.</p> "> Figure 15
<p>Time series deformation at point P2 marked in <a href="#sensors-19-04425-f013" class="html-fig">Figure 13</a> and <a href="#sensors-19-04425-f014" class="html-fig">Figure 14</a>.</p> "> Figure 16
<p>(<b>a</b>) Changes in the shoreline of Lake Dian; (<b>b</b>) stratigraphic profile along the line of CD, which corresponds to the position of boreholes.</p> "> Figure 17
<p>(<b>a</b>) Quaternary sediment thickness contours in Kunming and (<b>b</b>) relationship between ground deformation and quaternary sediment thickness.</p> "> Figure 18
<p>The relationship between ground deformation and quaternary active faults in Kunming. The black solid line shows the quaternary active faults.</p> "> Figure 19
<p>Changes in land cover over Kunming from (<b>a</b>) 1984 to (<b>b</b>) 2016; the yellow curve shows the main changes.</p> "> Figure 20
<p>The changes in land cover over Xishan from (<b>a</b>) 1984 to (<b>b</b>) 2016, and over Guandu from (<b>c</b>) 1984 to (<b>d</b>) 2016.</p> "> Figure 21
<p>The distribution of sampling points of building densities (<b>a</b>) and the relationship between ground deformation and building density (<b>b</b>).</p> "> Figure 22
<p>The distribution of groundwater exploited regions in Kunming (<b>a</b>) and relationship between annual changes of groundwater level and ground deformation in Guandu (<b>b</b>), Chenggong (<b>c</b>), Longtoujie (<b>d</b>), and Majie (<b>e</b>). The ground deformation is derived from L-band ALOS-1.</p> "> Figure A1
<p>The distribution of the temporal and spatial baselines from Sentinel-1A with ascending orbit between 23 January 2015 and 17 February 2017.</p> "> Figure A2
<p>Time series deformation in Kunming observed using C-band Sentinel-1A images with ascending orbit between 23 January 2015 and 17 February 2017.</p> "> Figure A3
<p>The distribution of the temporal and spatial baselines from Sentinel-1A with descending orbit between 25 May 2015 and 16 September 2016.</p> "> Figure A4
<p>Time series deformation in Kunming observed using C-band Sentinel-1A images with descending orbit between 25 May 2015 and 16 September 2016.</p> "> Figure A5
<p>The distribution of the temporal and spatial baselines from Sentinel-1A with descending orbit between 22 March 2018 and 1 September 2019.</p> "> Figure A6
<p>Time series deformation in Kunming observed using C-band Sentinel-1A images with descending orbit between 22 March 2018 and 1 September 2019.</p> ">
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Materials and Methods
3.1. SAR Datasets
3.2. Multi-Temporal InSAR Processing
4. Results and Analysis
4.1. Annual Deformation Velocity
4.2. Validation of InSAR Results
4.2.1. Comparison with Leveling-Derived Deformation
4.2.2. Comparison of Deformation Between the ALOS-1 and Sentinel-1A Datasets
4.2.3. Comparison of Deformation Between the COSMO-SkyMed and Sentinel-1A Datasets
4.3. Time Series Deformation in Guandu
4.4. Time Series Deformation in Xishan
5. Discussion
5.1. Subsidence Due to Soft Soil Consolidation
5.2. Subsidence Due to High-Rise Building Load
5.3. Subsidence Due to Groundwater Exploitation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fu, B.C.; Huang, Y.; Li, Q.S.; Fu, J.Q. Research of Cause and Classification of the Shallow Layer Soft Soil for Kunming Basin. J. Kunming Univ. Sci. Technol. 2000, 25, 22–26. [Google Scholar]
- Lu, N.; Hernandez, A.J.; Ramsey, R.D. Land cover dynamics monitoring with Landsat data in Kunming, China: A cost-effective sampling and modelling scheme using Google Earth imagery and random forests. Geocarto Int. 2015, 30, 186–201. [Google Scholar] [CrossRef]
- Hu, R.L.; Yue, Z.Q.; Wang, L.U.; Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.M.; Zhang, Q.; Zhu, W. Investigation Report of Surface Cover and Ground Deformation of Kunming, China (In Chinese); Yunnan Institute of Surveying and Mapping Engineering: Kunming, China, 2017. [Google Scholar]
- Youxin, J.C.; Ruiqi, H.Y. Development Process and Characteristics of Land Subsidence in Kunming. J. Seismol. Res. 2001, 24, 55–60. [Google Scholar]
- Chuandong, X.; Shucheng, T.; Feng, L. Clay minerals in Quaternary clayey soil and its relation to the land subsidence in Kunming basin area. Acta Petrologica et Mineralogica 2001, 20, 437–440. [Google Scholar]
- Chuandong, X.; Xing, L.; Baozhu, L. Mechanism analysis of land subsidence in Kunming city area. Chin. J. Geol. Hazard Control 2004, 15, 47654. [Google Scholar]
- Yu, C.; Li, Z.; Chen, J.; Hu, J.C. Small magnitude co-seismic deformation of the 2017 Mw 6.4 Nyingchi earthquake revealed by InSAR measurements with atmospheric correction. Remote Sens. 2018, 10, 684. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S. Detecting the source location of recent summit inflation via three-dimensional InSAR observation of Kīlauea volcano. Remote Sens. 2015, 7, 14386–14402. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Bull, D. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens. Environ. 2019, 230, 111179. [Google Scholar] [CrossRef] [Green Version]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef]
- Yu, H.; Lee, H.; Cao, N.; Lan, Y. Optimal baseline design for multibaseline InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5738–5750. [Google Scholar] [CrossRef]
- Prébet, R.; Yan, Y.; Jauvin, M.; Trouvé, E. A Data-Adaptive EOF-Based Method for Displacement Signal Retrieval from InSAR Displacement Measurement Time Series for Decorrelating Targets. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5829–5852. [Google Scholar] [CrossRef]
- Wnuk, K.; Walton, G.; Zhou, W. Four-dimensional filtering of InSAR persistent scatterers elucidates subsidence induced by tunnel excavation in the Sri Lankan highlands. J. Appl. Remote Sens. 2019, 3, 34508. [Google Scholar] [CrossRef]
- Zou, W.; Chen, L. Determination of Optimum Tie Point Interval for SAR Image Coregistration by Decomposing Autocorrelation Coefficient. IEEE Trans. Geosci. Remote Sens. 2019, 5067–5084. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Wei, J.; Duan, M.; Wu, L.; Hou, J.; Zhu, J. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Sci. Rev. 2019, 192, 258–284. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Ding, X.; Perissin, D. Pixel-Wise MTInSAR Estimator for Integration of Coherent Point Selection and Unwrapped Phase Vector Recovery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 59–68. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, W.; Ding, X.; Zhao, C.; Yang, C.; Qu, W. Two-dimensional deformation monitoring over Qingxu (China) by integrating C-, L-and X-bands SAR images. Remote Sens. Lett. 2014, 5, 27–36. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z. Research on Spatiotemporal Land Deformation (2012–2018) over Xi’an, China, with Multi-Sensor SAR Datasets. Remote Sens. 2019, 11, 664. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E.; Robles, B. Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period. Nat. Hazards 2018, 92, 225–255. [Google Scholar] [CrossRef]
- Aimaiti, Y.; Yamazaki, F.; Liu, W. Multi-sensor InSAR analysis of progressive land subsidence over the Coastal City of Urayasu, Japan. Remote Sens. 2018, 10, 1304. [Google Scholar] [CrossRef]
- Solari, L.; Del, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence monitoring in Italy in the last two decades. Front. Earth. Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Aslan, G.; Cakır, Z.; Ergintav, S.; Lasserre, C.; Renard, F. Analysis of secular ground motions in istanbul from a long-term insar time-series (1992–2017). Remote Sens. 2018, 10, 408. [Google Scholar] [CrossRef]
- Rimba, A.B.; Osawa, T.; Parwata, I.N.S.; As-syakur, A.R.; Kasim, F.; Astarini, I.A. Physical assessment of coastal vulnerability under enhanced land subsidence in Semarang, Indonesia, using multi-sensor satellite data. Adv. Space Res. 2018, 61, 2159–2179. [Google Scholar]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.; Fan, H.; Du, S.; Zou, H. Monitoring and analysis of mining 3D time-series deformation based on multi-track SAR data. Int. J. Remote Sens. 2019, 40, 1409–1425. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Wang, X.; Liu, G. Retrieving three-dimensional co-seismic deformation of the 2017 MW7. 3 Iraq earthquake by multi-sensor SAR images. Remote Sens. 2018, 10, 857. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogram. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.H.; Li, W.C. Geological characteristics of the Pulang porphyry copper deposit, Yunnan. Geol. China 2006, 33, 352–362. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A. Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Baran, I.; Stewart, M.P.; Kampes, B.M.; Perski, Z.; Lilly, P. A modification to the Goldstein radar interferogram filter. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2114–2118. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z.; Jung, H.S.; Hu, J.; Feng, G. A novel multitemporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3529–3540. [Google Scholar] [CrossRef]
- Schulz, K.; Boldt, M.; Even, M. Generalization of the CoVAmCoh analysis for the interpretation of arbitrary InSAR images. IEEE Int. Geosci. Remote Sens. Symp. 2012, 7444–7447. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, F.; Qu, W. Landslide monitoring by combining of CR-InSAR and GPS techniques. Adv. Space Res. 2014, 53, 430–439. [Google Scholar] [CrossRef]
- Meckel, T.A.; ten Brink, U.S.; Williams, S.J. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Cui, Z.D.; Wang, J.X.; Lu, C.; Yan, X.X. Model test study of land subsidence caused by high-rise building group in Shanghai. Bull. Een. Geol. Environ. 2008, 67, 173–179. [Google Scholar] [CrossRef]
- Franzius, J.N.; Potts, D.M.; Addenbrooke, T.I.; Burland, J.B. The influence of building weight on tunneling-induced ground and building deformation. Soils Found. 2004, 44, 25–38. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Wu, J.; Hu, Y.; Zhang, L. Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landsc. Urban Plan. 2010, 98, 210–219. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N. Assessment of Groundwater Overdraft Zones in Kunming Basin. J. Yangtze River Sci. Res. Inst. 2017, 34, 35–38. [Google Scholar]
- Holzer, T.L.; Johnson, A.I. Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 1985, 11, 245–255. [Google Scholar] [CrossRef]
- Woldai, T.; Oppliger, G.; Taranik, J. Monitoring dewatering induced subsidence and fault reactivation using interferometric synthetic aperture radar. Int. J. Remote Sens. 2009, 30, 1503–1519. [Google Scholar] [CrossRef]
No. | Satellite | Orbit Direction | Azimuth Angle (°) | Incidence Angle (°) | Number of SAR Images | Data Period |
---|---|---|---|---|---|---|
1 | ALOS-1 | Ascending | −10 | 38 | 20 | 09/01/2007–07/03/2011 |
2 | COSMO-SkyMed | Descending | 10 | 29 | 40 | 13/06/2011–06/01/2016 |
3 | Sentinel-1A | Ascending | −12 | 39 | 31 | 23/01/2015–17/02/2017 |
4 | Sentinel-1A | Descending | 11 | 39 | 60 | 25/05/2015–01/09/2019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Li, W.-L.; Zhang, Q.; Yang, Y.; Zhang, Y.; Qu, W.; Wang, C.-S. A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique. Sensors 2019, 19, 4425. https://doi.org/10.3390/s19204425
Zhu W, Li W-L, Zhang Q, Yang Y, Zhang Y, Qu W, Wang C-S. A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique. Sensors. 2019; 19(20):4425. https://doi.org/10.3390/s19204425
Chicago/Turabian StyleZhu, Wu, Wen-Liang Li, Qin Zhang, Yi Yang, Yan Zhang, Wei Qu, and Chi-Sheng Wang. 2019. "A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique" Sensors 19, no. 20: 4425. https://doi.org/10.3390/s19204425
APA StyleZhu, W., Li, W. -L., Zhang, Q., Yang, Y., Zhang, Y., Qu, W., & Wang, C. -S. (2019). A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique. Sensors, 19(20), 4425. https://doi.org/10.3390/s19204425